| ntroduction to Unix

Frank G. Fiamingo

Linda DeBula

Linda Condron

University Technology Services

The Ohio State Univer sity

September 23, 1998

© 1996-1998 University Technology Services, The Ohio State University, Baker Systems Engineering
Building, 1971 Neil Avenue, Columbus, OH 43210.

All rights reserved. Redistribution and use, with or without modification, are permitted provided that the following
conditions are met:
1. Redistributions must retain the above copyright notice, thislist of conditions, and the following disclaimer.

2. Neither the name of the University nor the names of its contributors may be used to endorse or promote
products or services derived from this document without specific prior written permission.

THISPUBLICATION ISPROVIDED "ASIS' WITHOUT WARRANTY OF ANY KIND. THISPUBLICATION MAY
INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.

UNIX isaregistered trademark of The Open Group, AT& T isatrademark of American Telephone and
Telegraph, Inc.

This publication is provided “as is’ without warranty of any kind. This publication may include
technical inaccuracies or typographical errors.

Copyright and URL s revised September 1998

The authors' email addresses are:

Frank Fiamingo fiamingo.1@osu.edu
Linda DeBula debula.2@osu.edu
Linda Condron condron.1@osu.edu

This document can be obtained via:
http://wks.uts.ohi o-state.edu/unix_course/unix.html
or
ftp://wks.uts.ohio-state.edu/unix_course/unix_book.ps

2 © 1998 University Technology Services, The Ohio State University Introduction to Unix

Table of Contents

1 HISLOrY Of UNIX oo
2 UNIX SEFUCLUN© ..t
21 TheOperating SYSIEM ... 9
2.2 THheFileSYyStem ... 11
2.3 Unix Directories, Filesand INOAEScccocervereeneninnienienne 12
2.4 UNIX Programs ... 13
3 GEetting StArted ..o 14
1350 R oo o1 o 11 o ISR 14
311 Terminal TYPE .oooeeeeeeeeceecte et s 14
3.1.2 PaSSWOITSeeiueiiiieieeie st 15
313 EXITING oottt 15
314 1AENLLY .ooveeeeeieeeee e 16
3.2 Unix Command LiN@ StruCtUreccocceveeneenenenneeeseeseeens 16
3.3 CONIOl KEYS ..o e 17
34 sttty -terminal CONLrolccoceeveeeeeeceeecee e 17
35 GEttiNGHEIP e 19
3.6 Directory Navigation and Controlc.cceceeerenennnienenenennn 20
3.6.1 pwd - print working direCtoryccccccevvveveiieeieennne 21
3.6.2 cd-changedireCtorycccoooevenieniineeneee e 21
3.6.3 mkdir - make adireCtorycccceeeverenenenenenesenens 22
3.6.4 rmdir - remove dir€Ctorycccoceeveeveeeesecce e 22
3.6.5 Is-list directory CONteNtSccceverveereereriensieesienens 23
3.7 FileMaintenance COMMAaNGSccccceevereereereseeseereeseeseeneens 25
3.7.1 cp-copy Afile ..coceeicieiieeee e 26
3.7.2 mv-moveafile .. 26
3.7.3 rm-removeafile ... 27
3.7.4 FIlePermiSSiONnsccccvirerinienienieniene e 27
3.7.5 chmod - change file permissions...........cccoceeeveereennnne 28
3.7.6 chown - change OWNErshipcccceverenerenenenenennens 29
3.7.7 chgrp - change groupcccceeeeeeeseeiiecee e eee e 29
3.8 Display COMMANScccoeeiereeiieieseere e 30
3.8.1 echo-echoastalementcccocceveeienieesenieseeseeens 30

Introduction to Unix © 1998 University Technology Services, The Ohio State University

3.8.2 cat-concatenate afile ..o 31

3.8.3 more, less, and pg - page through afilecc.ccce.ee. 31
3.8.4 head - display the start of afilecccccevveieiceeieenne 32
3.85 tal - display theend of afilecccoceeeveviiieiincins 32
System Resources & Printing ...occeeceevee e 33
41 SYSLEM RESOUICESooieiiiiieiiieiee e e siee s sseeseesseeese e s e saeesneen 33
411 df - summarizedisk block and fileusage 34
4.1.2 du-report disk SPACEINUSEcceevveeveeeecieeriecee s 34
4.1.3 ps- show status of active processesccoceveeereeneene 35
4.1.4 Kill - terminat@ @ProCeSScceerereereereeniereesiesiesiennes 36
4.1.5 WhO - liSt CUMTENt USEN'S ...oveveeiieeieeee e 37
4.1.6 wherels- report program locationsccceeereeneene 37
4.1.7 which - report the command foundccecereruenne. 38
4.1.8 hostname/uname - name of machineccoceeeruenne. 38
4.1.9 script - record your screen 1/Ooeevveeveeienieneeene 38
4.1.10 date- current date and timeccccevveceveeresieeneenns 40
4.2 Print COMMANGScooceeiiirieieiesie et 41
4.2.1 lp/lpr - submit aprint jobcccccovceererienenreneseeene 41
4.2.2 |pstat/lpq - check the status of aprint job 42
4.2.3 cancel/lprm - cancel aprint jobcccccvveeieiieeieennne 42
4.2.4 pr- preparefilesfor printingc.ccoeeevenieienienennns 43
SNES e —————— 45
51 Built-in COmMMANGSc.cooeiieiieeeeseee e 46
51T SN e 46
512 CSN et 47
52 Environment Variablesccccooveiiiiieiieneeeeseee e 48
53 TheBourne Shell, Sh ... 49
54 TheC Shell, CN oo 50
55 JOD CONLIOl e 51
ST o T (o SRS 52
57 Changingyour Shell ... 54
Special UNiX FEALUIESc.ecveeiiiecee ettt 55
6.1 FileDESCIIPLOrS ooeeieieieieieeeertee ettt 55
6.2 FileRedIr€CtioNoccoovieieeecece e 55
B.2.1 CSN e 56
B.2.2 SN e 57
6.3 Other Special Command Symbols ..o, 58
6.4 WIild Cardsccooeiiiieieieeee e 58
B IS o 000 =S] [59
7.1 Regular EXPression SYNtaXcccccceeeceeiieeeiieesiessiseeseessseessnn s 59
7.2 Text Processing Commandscccceeererereriienenesiesesee s 61
T2 1 QUED oo 61
722 SB o 65

© 1998 University Technology Services, The Ohio State University Introduction to Unix

7.2.3 awk, NaWK, QawKccoeviriiieiiicee e 67

8 Other Useful Commandsc.ccccveveriiieesie e 70
81 WOorkingWIith FIlescooiiiiieieeeee e 70
8.1.1 cmp - comparefile CoNtentscccceveverenenienenennens 71
8.1.2 diff - differencesinfilesccovvevvevvcecicce e 72
8.1.3 cut-select partsof alinecccoceveeviiienenieceeee 73
8.14 paste- Mergefiles ... 74
8.1.5 touch-createafileccccovmviiiieiieiiceceee e, 76
8.1.6 wc-countwordsinafileccoriniininiininnce, 77
8.1.7 In-linktoanother filecccovvoevieeiinnieceee e 78
8.1.8 sort- sortfilecontents........cccceveeveececiececce e, 79
8.1.9 tee- copy command OULPULcccerveereererienrensiennns 82
8.1.10 uniq - remove duplicate [iNescocevvvvenerienenennns 84
8.1.11 strings- find ASCII StHiNGS ...covveveeieeeeceeie e 85
8.1.12 file- fIlETYPE oo 86
8.1.13 tr - trandate CharaCtersccveveeeereeseece e 86
8.1.14 find - fiNA fIl€S ..cveeiiiieeee e 89
8.2 FileArchiving, Compression and Conversionccceeeeueene 91
8.2.1 File COMPIreESSIONcccoviereirieriiniieieee e 91
8.2.2 tar-archivefiles ..., 93
8.2.3 uuencode/uudecode - encode afilecocceeeveerennne 94
8.24 dd - block copy and CONVErtcccevevireneneriniennn, 95
8.25 od- octal dump of afilecccccevveveeiiieceee e 96
8.3 ReMOte CONNECLIONSooiveieiiieeieeee e 98
8.3.1 TELNET and FTP - remote login and file transfer protocols 98
8.3.2 finger - get information about USerscccceeveeueenee. 100
8.3.3 Remote commandsccecereeienieneee e 101
9 Shell Programmingcccceevcee e 103
9.1 ShEl SCrIPLS e 103
9.2 Setting Parameter ValUESccccveiveieevieece e 103
1S G T O ¥ o) 41 oo SRS 104
9.4 ValAbIES oo 105
9.5 Parameter SUDSHITULIONcccvvveecieeceeceee e 107
9.6 HEre DOCUMENToociiiiciiie e 109
9.7 INtEractive INPUL ..o 110
O0.7.1 SN e 110
0.7.2 CSN et e 110
0.8 FUNCHIONS ..ot 111
9.9 Control ComMmaNdSccceevuereeneerieeiee e 113
9.9.1 Conditional ifccoeeviveiieiiicee e, 113
9.9.1.1 SN i 113
90.9.1.2 CSN i 114
9.9.2 Conditional switchand case...........ccccevvevvveeverccieennen. 115
9.9. 21 SN i 115

Introduction to Unix

© 1998 University Technology Services, The Ohio State University

10

11

12

9.9. 2.2 CSN i 116

9.9.3 forandforeaChcccccoovvviiieiiciee e, 117
0.9.3. L SN i 117
0.9.3. 2 C8N i 117
9.9.4 WhIlE .o 118
9.9 4.1 SN i 118
90.9.4.2 CSN i 119
9.95 UNLIl e 119
0.9.6 TESE .iviiiceeee e 120
9.9.7 C Shell Logical and Relational Operators 122
EQITOrS oo e 123
10.1 Configuring YOUr Vi SESSIONccccveerierieeneenieseesieesee e sseeeens 124
10.2 Configuring YOur emacs SESSIONcccceerereeieeneereeseeseeseennenns 125
10.3 Vi Quick Reference GUIAEcooeeeeveecieecieccee e 126
10.4 emacs Quick Reference GUIdEccccoevcveiieiiiiecie e, 127
Unix Command SUMMArYcccccevcieeeiiieeiiee e eseeeeeee e 128
11,1 UNIX COMMANGAS ..ot 128
A Short Unix Bibliography ... 131
12.1 Highly Recommendedccccooiiiiiienininesieeee e 131
122 ASSOrted Others ... 131

© 1998 University Technology Services, The Ohio State University Introduction to Unix

CHAPTER 1 HiS:OI'y of Unix

1965 Bell Laboratories joins with MIT and Genera Electric in the development effort for the new
operating system, Multics, which would provide multi-user, multi-processor, and multi-level
(hierarchical) file system, among its many forward-looking features.

1969 AT&T was unhappy with the progress and drops out of the Multics project. Some of the Bell
L abs programmers who had worked on this project, Ken Thompson, Dennis Ritchie, Rudd Canaday,
and Doug Mcllroy designed and implemented the first version of the Unix File System on a PDP-7
along with afew utilities. It was given the name UNIX by Brian Kernighan as a pun on Multics.

1970, Jan1 timezero for UNIX

1971 The system now runs on a PDP-11, with 16Kbytes of memory, including 8Kbytes for user
programs and a512Kbyte disk.

Its first real useis as atext processing tool for the patent department at Bell Labs. That utilization
justified further research and development by the programming group. UNIX caught on among
programmers because it was designed with these features:

e programmers environment

e simple user interface

o simple utilities that can be combined to perform powerful functions

e hierarchical file system

e simpleinterface to devices consistent with file format

e multi-user, multi-process system

e architecture independent and transparent to the user.

1973 Unix isre-written mostly in C, anew language developed by Dennis Ritchie. Being writtenin
this high-level language greatly decreased the effort needed to port it to new machines.

1974 Thompson and Ritchie publish a paper in the Communications of the ACM describing the
new Unix OS. This generates enthusiasm in the Academic community which sees a potentially great
teaching tool for studying programming systems development. Since AT&T is prevented from
marketing the product due to the 1956 Consent Decree they license it to Universities for educational
purposes and to commercial entities.

1977 There are now about 500 Unix sites world-wide.

Introduction to Unix © 1998 University Technology Services, The Ohio State University 7

History of Unix

1980 BSD 4.1 (Berkeley Software Development)
1983 SunOS, BSD 4.2, SysV

1984 There are now about 100,000 Unix sites running on many different hardware platforms, of
vastly different capabilities.

1988 AT&T and Sun Microsystems jointly develop System V Release 4 (SVR4). Thiswould later
be developed into UnixWare and Solaris 2.

1993 Novell buys UNIX from AT&T
1994 Novedll givesthe name"UNI X" to X/OPEN

1995 Santa Cruz Operations buys UnixWare from Novell. Santa Cruz Operations and
Hewlett-Packard announce that they will jointly develop a 64-bit version of Unix.

1996 International Data Corporation forecasts that in 1997 there will be 3 million Unix systems
shipped world-wide.

8 © 1998 University Technology Services, The Ohio State University Introduction to Unix

The Operating System

CHAPTER 2 Unix Structure

2.1 The Operating System

Unix isalayered operating system. Theinnermost layer isthe hardware that provides the servicesfor
the OS. The operating system, referred to in Unix as the kernel, interacts directly with the hardware
and provides the services to the user programs. These user programs don’t need to know anything
about the hardware. They just need to know how to interact with the kernel and it’s up to the kernel
to provide the desired service. One of the big appeals of Unix to programmers has been that most
well written user programs are independent of the underlying hardware, making them readily portable
to new systems.

User programs interact with the kernel through a set of standard system calls. These system calls
request services to be provided by the kernel. Such services would include accessing a file: open
close, read, write, link, or execute afile; starting or updating accounting records; changing ownership
of afileor directory; changing to anew directory; creating, suspending, or killing a process; enabling
access to hardware devices; and setting limits on system resources.

Unix is a multi-user, multi-tasking operating system. You can have many users logged into a
system simultaneously, each running many programs. It's the kernel’s job to keep each process and
user separate and to regulate access to system hardware, including cpu, memory, disk and other 1/0
devices.

Introduction to Unix © 1998 University Technology Services, The Ohio State University 9

Unix Structure

FIGURE 2.1 Unix System Structure

Programs

Hardware

System Calls

10 © 1998 University Technology Services, The Ohio State University Introduction to Unix

The File System

2.2 The File System

The Unix file system looks like an inverted tree structure. Y ou start with the root directory, denoted
by /, at the top and work down through sub-directories underneath it.

/
bin dev etc lib tmp usr home
ttya cua0 /%

bin lib local

passwd group
sh date csh

condron frank lindadb

P N

source mail bin

N

xntp traceroute

Introduction to Unix © 1998 University Technology Services, The Ohio State University 11

Unix Structure

Each node is either a file or a directory of files, where the latter can contain other files and
directories. You specify afileor directory by its path name, either the full, or absolute, path name or
the one relative to alocation. The full path name starts with the root, /, and follows the branches of
the file system, each separated by /, until you reach the desired file, e.q.:

/home/condron/source/xntp

A relative path name specifies the path relative to another, usually the current working directory that
you are at. Two specia directory entries should be introduced now:

the current directory

the parent of the current directory

So if I'm at /home/frank and wish to specify the path above in arelative fashion | could use:

..[condron/source/xntp

This indicates that | should first go up one directory level, then come down through the condron
directory, followed by the sour ce directory and then to xntp.

2.3 Unix Directories, Files and Inodes

Every directory and fileislisted in its parent directory. In the case of the root directory, that parent
isitself. A directory is a file that contains a table listing the files contained within it, giving file
names to theinode numbersin thelist. Aninodeisaspecial file designed to be read by the kernel to
learn the information about each file. It specifies the permissions on the file, ownership, date of
creation and of last access and change, and the physical location of the data blocks on the disk
containing the file.

The system does not require any particular structure for the data in the file itself. The file can be
ASCII or binary or a combination, and may represent text data, a shell script, compiled object code
for a program, directory table, junk, or anything you would like.

There’ s no header, trailer, label information or EOF character as part of thefile.

12 © 1998 University Technology Services, The Ohio State University Introduction to Unix

Unix Programs

2.4 Unix Programs

A program, or command, interacts with the kernel to provide the environment and perform the
functions called for by the user. A program can be: an executable shell file, known as ashell script; a
built-in shell command; or a source compiled, object code file.

The shell isacommand lineinterpreter. The user interacts with the kernel through the shell. Y ou can
write ASCII (text) scripts to be acted upon by a shell.

System programs are usually binary, having been compiled from C source code. These are located in
placeslike /bin, /usr/bin, /usr/local/bin, /usr/uch, etc. They provide the functions that you normally
think of when you think of Unix. Some of these are sh, csh, date, who, more, and there are many
others.

Introduction to Unix © 1998 University Technology Services, The Ohio State University 13

Getting Started

CHAPTER 3 Getting Started

3.1 Loggingin

After connecting with aUnix system, a user is prompted for alogin username, then apassword. The
login username is the user's unique name on the system. The password is a changeable code known
only to the user. At the login prompt, the user should enter the username; at the password prompt,
the current password should be typed.

Note: Unix is case sensitive. Therefore, the login and password should be typed exactly as issued;
thelogin, at least, will normally be in lower case.

3.1.1 Terminal Type

Most systems are set up so the user is by default prompted for aterminal type, which should be set to
match the terminal in use before proceeding. Most computers work if you choose "vt100". Users
connecting using a Sun workstation may want to use "sun"; those using an X-Terminal may want to
use"xterms' or "xterm".

The terminal type indicates to the Unix system how to interact with the session just opened.

Should you need to reset the terminal type, enter the command:

setenv TERM <term type> - if using the C-shell (see Chapter 4.)
(On some systems, e.g. MAGNUS, it’'s also necessary to type "unsetenv TERMCAP".)
-Or-

TERM=<term type>; export TERM - if using the Bourne shell (see Chapter 4.)

where <term type> is the terminal type, such asvt100, that you would like set.

14 © 1998 University Technology Services, The Ohio State University Introduction to Unix

Logging in

3.1.2 Passwords

When your account is issued, you will be given an initial password. It isimportant for system and
personal security that the password for your account be changed to something of your choosing. The
command for changing apassword is"passwd”. Y ou will be asked both for your old password and to
type your new selected password twice. If you mistype your old password or do not type your new
password the same way twice, the system will indicate that the password has not been changed.

Some system administrators have installed programs that check for appropriateness of password (isit
cryptic enough for reasonable system security). A password change may be rejected by this program.

When choosing a password, it isimportant that it be something that could not be guessed -- either by
somebody unknown to you trying to break in, or by an acquaintance who knows you. Suggestions for
choosing and using a password follow:
Don't use aword (or words) in any language
use a proper name
use information that can be found in your wallet
use information commonly known about you (car license, pet name, etc)
use control characters. Some systems can't handle them
write your password anywhere
ever give your password to *anybody*
Do use amixture of character types (al phabetic, numeric, special)
use amixture of upper case and lower case
use at least 6 characters
choose a password you can remember
change your password often
make sure nobody islooking over your shoulder when you are entering your password

3.1.3 Exiting
AD - indicates end of data stream; can log a user off. The latter is disabled on many systems
AC - interrupt
logout - leave the system
exit - leave the shell

Introduction to Unix © 1998 University Technology Services, The Ohio State University 15

Getting Started

3.1.4 Identity

The system identifies you by the user and group numbers (userid and groupid, respectively)
assigned to you by your system administrator. You don’t normally need to know your userid or
groupid as the system translates username < userid, and groupname <> groupid automatically. You
probably already know your username; it's the name you logon with. The groupname is not as
obvious, and indeed, you may belong to more than one group. Your primary group is the one
associated with your username in the password database file, as set up by your system administrator.
Similarly, there is a group database file where the system administrator can assign you rights to
additional groups on the system.

In the examples below % isyour shell prompt; you don’t type thisin.
You can determine your userid and the list of groups you belong to with the id and groups
commands. On some systems id displays your user and primary group information, e.g.:
%id
uid=1101(frank) gid=10(staff)
on other systemsit also displays information for any additional groups you belong to:
%id
uid=1101(frank) gid=10(staff) groups=10(staff),5(operator),14(sysadmin),110(uts)
The groups command displays the group information for all the groups you belong to, e.g.:

% groups
staff sysadmin uts operator

3.2 Unix Command Line Structure

A command is a program that tells the Unix system to do something. It has the form:

command [options] [arguments]
where an argument indicates on what the command is to perform its action, usually afile or series of
files. An option modifies the command, changing the way it performs.

Commands are case sensitive. command and Command are not the same.

Optionsare generally preceded by ahyphen (-), and for most commands, more than one option can be
strung together, in the form:

command -[option][option][option]
eg.

Is-aR
will perform along list on al filesin the current directory and recursively perform the list through all
sub-directories.
For most commands you can separate the options, preceding each with a hyphen, e.q.:

command -optionl -option2 -option3

16 © 1998 University Technology Services, The Ohio State University Introduction to Unix

Control Keys

asin:

Is-a-l -R
Some commands have options that require parameters. Options requiring parameters are usually
specified separately, e.g.:

Ipr -Pprinter3 -# 2 file
will send 2 copies of fileto printer3.
These are the standard conventions for commands. However, not all Unix commands will follow the
standard. Some don't require the hyphen before options and some won't let you group options

together, i.e. they may require that each option be preceded by a hyphen and separated by whitespace
from other options and arguments.

Options and syntax for acommand are listed in the man page for the command.

3.3 Control Keys

Control keys are used to perform special functions on the command line or within an editor. You
type these by holding down the Control key and some other key simultaneously. This is usually
represented asKey. Control-Swould be written as”™S. With control keys upper and lower case are
the same, so *Sisthe same as”s. This particular example is a stop signal and tells the terminal to
stop accepting input. 1t will remain that way until you type astart signal, * Q.

Control-U is normally the "line-kill" signal for your terminal. When typed it erases the entire input
line.

In the vi editor you can type acontrol key into your text file by first typing 'V followed by the control
character desired, so to type “H into a document type "V~ H.

3.4 stty - terminal control

stty reports or sets terminal control options. The "tty" is an abbreviation that harks back to the days
of teletypewriters, which were associated with transmission of telegraph messages, and which were
models for early computer terminals.

For new users, the most important use of the stty command is setting the erase function to the
appropriate key on their terminal. For systems programmers or shell script writers, the stty command
provides an invaluable tool for configuring many aspects of 1/0 control for a given device, including
the following:

- erase and line-kill characters

- data transmission speed

- parity checking on data transmission

- hardware flow control

- newline (NL) versus carriage return plus linefeed (CR-LF)

Introduction to Unix © 1998 University Technology Services, The Ohio State University 17

Getting Started

- interpreting tab characters
- edited versus raw input
- mapping of upper case to lower case

This command is very system specific, so consult the man pages for the details of the stty command
on your system.

Syntax
stty [options]

Options
(none) report the terminal settings
all (or -a) report on all options
echoe echo ERASE as BS-space-BS
dec set modes suitable for Digital Equipment Corporation operating systems (which
distinguishes between ERASE and BACKSPACE) (Not available on al systems)
kill set the LINE-KILL character
erase set the ERA SE character
intr set the INTERRUPT character
Examples

Y ou can display and change your terminal control settings with the stty command. To display all (-a)
of the current line settings:
% stty -a
speed 38400 baud, 24 rows, 80 columns
parenb -parodd cs7 -cstopb -hupcl cread -clocal -crtscts
-ignbrk brkint ignpar -parmrk -inpck istrip -inlcr -igncr icrnl -iuclc
ixon -ixany -ixoff imaxbel
isig iexten icanon -xcase echo echoe echok -echonl -noflsh -tostop
echoctl -echoprt echoke
opost -olcuc onlcr -ocrnl -onocr -onlret -ofill -ofdel
erase kill weraserprnt flush Inext susp intr quit stop eof
"AMH AU AW AR MO ANV AZINYY AC N ASIMQ D

Y ou can change settings using stty, e.g., to change the erase character from ~? (the delete key) to *H:
% stty erase *H

This will set the terminal options for the current session only. To have this done for you
automatically each time you login, it can be inserted into the .login or .profile file that we'll ook at
later.

18 © 1998 University Technology Services, The Ohio State University Introduction to Unix

Getting Help

3.5 Getting Help

The Unix manual, usually called man pages, is available on-line to explain the usage of the Unix
system and commands. To use a man page, type the command "man" at the system prompt followed
by the command for which you need information.

Syntax

man [options] command_name

Common Options

-k keyword list command synopsis line for all keyword matches
-M path path to man pages
-a show all matching man pages (SVR4)

Examples

Y ou can use man to provide a one line synopsis of any commands that contain the keyword that you
want to search on with the "-k" option, e.g. to search on the keyword password, type:
% man -k password
passwd (5) - password file
passwd (1) - change password information

The number in parentheses indicates the section of the man pages where these references were found.
Y ou can then access the man page (by default it will give you the lower numbered entry, but you can
use a command line option to specify adifferent one) with:

% man passwd

PASSWD(1) USER COMMANDS PASSWD(1)
NAME
passwd - change password information
SYNOPSIS
passwd [-elogin_shell] [username]
DESCRIPTION

passwd changes (or sets) a user's password.

passwd prompts twice for the new password, without displaying

it. Thisisto alow for the possibility of typing mistakes.

Only the user and the super-user can change the user's password.
OPTIONS

-e Change the user'slogin shell.

Here we' ve paraphrased and truncated the output for space and copyright concerns.

Introduction to Unix © 1998 University Technology Services, The Ohio State University 19

Getting Started

3.6 Directory Navigation and Control

The Unix file system is set up like a tree branching out from the root. The the root directory of the
system is symbolized by the forward slash (/). System and user directories are organized under the
root. The user does not have a root directory in Unix; users generally log into their own home
directory. Users can then create other directories under their home. The following table summarizes
some directory navigation commands.

TABLE 3.1 Navigation and Directory Control Commands
Command/Syntax What it will do
cd [directory] change directory
Is[optiong] [directory or fil€] list directory contents or file permissions
mkdir [options] directory make adirectory
pwd print working (current) directory
rmdir [optiong] directory remove adirectory

If you're familiar with DOS the following table comparing similar commands might help to provide
the proper reference frame.

TABLE 3.2 Unix vs DOS Navigation and Directory Control Commands

Command Unix DOS

list directory contents Is dir

make directory mkdir md & mkdir

change directory cd cd & chdir

delete (remove) directory rmdir rd & rmdir

return to user’'s home directory cd cd\

location in path pwd cd

(present working directory)

20 © 1998 University Technology Services, The Ohio State University Introduction to Unix

Directory Navigation and Control

3.6.1 pwd - print working directory

At any time you can determine where you are in the file system hierarchy with the pwd, print working

directory, command, e.g.:
% pwd
/home/frank/src

3.6.2 cd - change directory

You can change to a new directory with the cd, change directory, command. cd will accept both

absolute and relative path names.

Syntax
cd [directory]

Examples

cd (aso chdir in some shells)
cd

cd/

cd..

cd../.

cd /full/path/name/from/r oot
cd path/from/current/location

cd ~username/directory

change directory

changes to user's home directory

changes directory to the system's root

goes up one directory level

goes up two directory levels

changes directory to absolute path named (note the leading slash)

changes directory to path relative to current location (no leading
slash)

changes directory to the named username's indicated directory
(Note: the ~isnot valid in the Bourne shell; see Chapter 5.)

Introduction to Unix © 1998 University Technology Services, The Ohio State University 21

Getting Started

3.6.3 mkdir - make a directory

You extend your home hierarchy by making sub-directories underneath it. This is done with the
mkdir, make directory, command. Again, you specify either the full or relative path of the directory:

Syntax

mkdir [options] directory

Common Options

-p create the intermediate (parent) directories, as needed
-m mode access permissions (SVR4). (We'll look at modes later in this Chapter).
Examples

% mkdir /home/frank/data

or, if your present working directory is/home/frank the following would be equivalent:
% mkdir data

3.6.4 rmdir - remove directory

A directory needs to be empty before you can removeit. If it'snot, you need to remove thefilesfirst.
Also, you can't remove a directory if it is your present working directory; you must first change out
of it.

Syntax

rmdir directory

Examples
To remove the empty directory /home/frank/data while in /home/frank use:
% rmdir data

or
% rmdir /home/frank/data

22 © 1998 University Technology Services, The Ohio State University Introduction to Unix

Directory Navigation and Control

3.6.5 Is - list directory contents

The command to list your directoriesand filesisls. With optionsit can provide information about the
size, type of file, permissions, dates of file creation, change and access.

Syntax
Is[options] [argument]

Common Options

When no argument is used, the listing will be of the current directory. There are many very useful
options for the lscommand. A listing of many of them follows. When using the command, string the
desired options together preceded by "-".

-a lists all files, including those beginning with a dot (.).
-d lists only names of directories, not the filesin the directory
-F indicates type of entry with atrailing symbol:
directories /
sockets =
symbolic links @
executables *
-g displays Unix group assigned to the file, requires the - option (BSD only)
-or- on an SVR4 machine, e.g. Solaris, this option has the opposite effect
-L if thefileisasymboalic link, lists the information for the file or directory the link

references, not the information for the link itself

-1 long listing: liststhe mode, link information, owner, size, last modification (time). If
thefileisasymbolic link, an arrow (-->) precedes the pathname of the linked-to file.

The mode field is given by the -l option and consists of 10 characters. The first character is one of
the following:

CHARACTER IFENTRY ISA

d directory

- plainfile

b block-type special file

c character-type speciad file
I symbolic link

S socket

The next 9 characters are in 3 sets of 3 characters each. They indicate the file access per missions:
the first 3 characters refer to the permissions for the user, the next three for the users in the Unix
group assigned to the file, and the last 3 to the permissions for other users on the system.
Designations are as follows:

Introduction to Unix © 1998 University Technology Services, The Ohio State University 23

Getting Started

read permission
write permission
execute permission
- No permission

X s -

There are a few less commonly used permission designations for special circumstances. These are

explained in the man page for Is.
Examples

Tolist thefilesin adirectory:

%ls

demofiles frank linda

Tolist al filesin adirectory, including the hidden (dot) filestry:

%ls-a
.cshrc .history plan
.emacs Jogin .profile

To get along listing:
%ls-d
total 24

drwxr-sr-x 5 workshop acs
drwxr-Xr-x 6 root sys
-YWXY-X¥-X 1 workshop acs
-YwW------- 1 workshop acs
-rW------- 1 workshop acs
-TWXTY-XT-X 1 workshop acs
-YwW-Yr--r-- 1 workshop acs
-TWXTY-XT-X 1 workshop acs
-rwW------- 1 workshop acs
drwx------ 3 workshop acs
drwx------ 2 workshop acs
drwx------ 3 workshop acs

.-rhosts
demofiles

512
512
532
525
622
238
273
413

49
512
512
512

frank
linda

Jun
May
May
May
May
May
May
May
May
May
May
May

29
20
20
24
14
22
14
20
24
21
24

11:
09:
15:
129
12:

21

09

23:
09:
20:
11:
148
10:

10

12
59
31

13

144

53
36
23
18

59

.cshrc
.emacs
.history
.login
.plan
.profile
.rhosts
demofiles
frank

linda

24 © 1998 University Technology Services, The Ohio State University

Introduction to Unix

File Maintenance Commands

3.7 File Maintenance Commands

To create, copy, remove and change permissions on files you can use the following commands.

TABLE 3.3 File Maintenance Commands
Command/Syntax What it will do
chgrp [options] group file change the group of thefile
chmod [optiong] file change file or directory access permissions
chown [options] owner file change the ownership of afile; can only be done by the superuser
cp [optiong] filel file2 copy filel into file2; file2 shouldn't already exist. Thiscommand creates
or overwritesfile2.
mv [optiong] filel file2 move filel into file2
rm [options] file remove (delete) afile or directory (-r recursively deletes the directory

and its contents) (-i prompts before removing files)

If you're familiar with DOS the following table comparing similar commands might help to provide
the proper reference frame.

TABLE 3.4 Unix vs DOS File Maintenance Commands
Command Unix DOS
copy file cp copy
movefile mv move (not supported on al versions of DOS)
renamefile mv rename & ren
delete (remove) file rm erase & del
display fileto screen
entirefile | cat type
one page at atime | more, less, pg type/p (not supported on al versions of DOS)

Introduction to Unix © 1998 University Technology Services, The Ohio State University 25

Getting Started

3.7.1 cp -copy afile
Copy the contents of one file to another with the cp command.

Syntax

cp [optiong] old_filename new_filename

Common Options

-i interactive (prompt and wait for confirmation before proceeding)
-r recursively copy adirectory

Examples

% cp old_filename new_filename

Y ou now have two copies of the file, each with identical contents. They are completely independent
of each other and you can edit and modify either as needed. They each have their own inode, data
blocks, and directory table entries.

3.7.2 mv - move afile
Rename afile with the move command, mv.

Syntax

mv [options] old_filename new_filename

Common Options

-i interactive (prompt and wait for confirmation before proceeding)

-f don’'t prompt, even when copying over an existing target file (overrides -i)
Examples

% mv old_filename new_filename
You now have afile called new_filename and the file old_filename is gone. Actually al you've

doneisto update the directory table entry to give the file anew name. The contents of the file remain
where they were.

26 © 1998 University Technology Services, The Ohio State University Introduction to Unix

File Maintenance Commands

3.7.3 rm -remove afile

Remove afile with the rm, remove, command.

Syntax

rm [options] filename

Common Options

-i interactive (prompt and wait for confirmation before proceeding)

-r recursively remove adirectory, first removing the files and subdirectories
beneath it
-f don’'t prompt for confirmation (overrides -i)
Examples

% rmold_filename

A listing of the directory will now show that the file no longer exists. Actualy, al you've doneisto
remove the directory table entry and mark the inode as unused. The file contents are still on the disk,
but the system now has no way of identifying those data blocks with a file name. There is no
command to "unremove" afile that has been removed in thisway. For this reason many novice users
alias their remove command to be "rm -i", where the -i option prompts them to answer yes or no
before the file is removed. Such aiases are normally placed in the .cshrc file for the C shell; see
Chapter 5)

3.7.4 File Permissions

Each file, directory, and executable has permissions set for who can read, write, and/or execute it.
To find the permissions assigned to afile, the Is command with the -I option should be used. Also,
using the -g option with "Is -I" will help when it is necessary to know the group for which the
permissions are set (BSD only).

When using the "Is -Ig" command on afile (Is-I on SysV), the output will appear as follows:
-rWXF-X--- user unixgroup size Month nn hh:mm filename

The area above designated by letters and dashes (-rwxr-x---) is the area showing the file type and
permissions as defined in the previous Section. Therefore, a permission string, for example, of
-rwxr-x--- allowsthe user (owner) of thefileto read, write, and execute it; those in the unixgroup of
the file can read and execute it; other s cannot accessit at all.

Introduction to Unix © 1998 University Technology Services, The Ohio State University 27

Getting Started

3.7.5 chmod - change file permissions

The command to change permissions on an item (file, directory, etc) is chmod (change mode). The
syntax involves using the command with three digits (representing the user (owner, u) permissions,
the group (g) permissions, and other (0) user's permissions) followed by the argument (which may
be a file name or list of files and directories). Or by using symbolic representation for the
permissions and who they apply to.

Each of the permission types is represented by either a numeric equivalent:

read=4, write=2, execute=1

or asingle letter:
read=r, write=w, execute=x
A permission of 4 or r would specify read permissions. If the permissions desired are read and write,

the 4 (representing read) and the 2 (representing write) are added together to make a permission of 6.
Therefore, a permission setting of 6 would allow read and write permissions.

Alternatively, you could use symbolic notation which uses the one letter representation for who and
for the permissions and an operator, where the operator can be:

+ add permissions
- remove permissions
= set permissions

So to set read and write for the owner we could use "u=rw" in symbolic notation.

Syntax
chmod nnn [argument list] numeric mode

chmod [who]op[perm] [argument list] symbolic mode

where nnn are the three numbers representing user, group, and other permissions, who isany of u, g,
o, or a (al) and perm is any of r, w, X. In symbolic notation you can separate permission
specifications by commas, as shown in the example below.

Common Options

-f force (no error message is generated if the change is unsuccessful)
-R recursively descend through the directory structure and change the modes
Examples

If the permission desired for filel is user: read, write, execute, group: read, execute, other: read,
execute, the command to use would be

chmod 755 filel or chmod u=rwx,go=rx filel

28 © 1998 University Technology Services, The Ohio State University Introduction to Unix

File Maintenance Commands

Reminder: When giving permissions to group and other to use afile, it isnecessary to allow at least
execute permission to the directories for the path in which the file is located. The easiest way to do
thisisto be in the directory for which permissions need to be granted:

chmod 711 . or chmod u=rw,+x . or chmod u=rwx,go=x .

wherethe dot (.) indicatesthis directory.

3.7.6 chown - change ownership

Ownership of a file can be changed with the chown command. On most versions of Unix this can
only be done by the super-user, i.e. anormal user can’t give away ownership of their files. chown is
used as below, where # represents the shell prompt for the super-user:

Syntax

chown [options] user[:group] file (SVR4)
chown [options] user[.group] file (BSD)

Common Options

-R recursively descend through the directory structure
-f force, and don’'t report any errors
Examples

chown new_owner file

3.7.7 chgrp - change group

Anyone can change the group of files they own, to another group they belong to, with the chgrp
command.

Syntax
chgrp [options] group file

Common Options

-R recursively descend through the directory structure
-f force, and don't report any errors
Examples

% chgrp new_group file

Introduction to Unix © 1998 University Technology Services, The Ohio State University 29

Getting Started

3.8 Display Commands

There are a number of commands you can use to display or view afile. Some of these are editors
which we will look at later. Here we will illustrate some of the commands normally used to display a
file.

TABLE 3.5 Display Commands
Command/Syntax What it will do
cat [optiong] file concatenate (list) afile
echo [text string] echo the text string to stdout
head [-number] file display thefirst 10 (or number of) lines of afile
more (or less or pg) [optiong] file page through atext file
tail [optiong] file display the last few lines (or parts) of afile

3.8.1 echo - echo a statement

The echo command is used to repeat, or echo, the argument you give it back to the standard output
device. It normally endswith aline-feed, but you can specify an option to prevent this.

Syntax
echo [string]

Common Options

-n don’t print <new-line> (BSD, shell built-in)
\c don't print <new-line> (SVR4)
\On where n isthe 8-bit ASCII character code (SVR4)
\t tab (SVR4)
\f form-feed (SVR4)
\n new-line (SVR4)
\v vertica tab (SVR4)
Examples
% echo Hello Class or echo "Hello Class"

To prevent the line feed:

% echo -n Hello Class or echo "Hello Class\c"
where the style to use in the last example depends on the echo command in use.

The \x options must be within pairs of single or double quotes, with or without other string characters.

30 © 1998 University Technology Services, The Ohio State University Introduction to Unix

Display Commands

3.8.2 cat - concatenate afile
Display the contents of afile with the concatenate command, cat.

Syntax

cat [optiong] [fil€]

Common Options

-n precede each line with aline number

-v display non-printing characters, except tabs, new-lines, and form-feeds

-e display $ at the end of each line (prior to new-line) (when used with -v option)
Examples

% cat filename

You can list aseries of files on the command line, and cat will concatenate them, starting each in turn,
immediately after completing the previous one, e.g.:

% cat filel file2 file3

3.8.3 more, less, and pg - page through a file

more, less, and pg let you page through the contents of afile one screenful at atime. These may not
al be available on your Unix system. They allow you to back up through the previous pages and
search for words, etc.

Syntax

more [options] [+/pattern] [filename]
less [optiong] [+/pattern] [filename]
pg [options] [+/pattern] [filename]

Options
more less pg Action
-C -C -C clear display before displaying
-i ignore case
-W default default don't exit at end of input, but prompt and wait
-lines -lines # of lines/screenful
+/pattern +/pattern +/pattern search for the pattern

Introduction to Unix © 1998 University Technology Services, The Ohio State University 31

Getting Started

Internal Controls

more displays (one screen at atime) the file requested
<gpace bar> to view next screen
<return> or <CR> to view one more line
q to quit viewing thefile
h help
b go back up one screenful
/word search for wor d in the remainder of thefile
See the man page for additional options
less similar to more; see the man page for options
pg the SV R4 equiva ent of more (page)

3.8.4 head - display the start of afile
head displays the head, or start, of thefile.

Syntax

head [optiong] file

Common Options

-n number number of lines to display, counting from the top of the file
-number same as above
Examples

By default head displays the first 10 lines. You can display more with the "-n number", or
"-number" options, e.g., to display thefirst 40 lines:

% head -40 filename or head -n 40 filename

3.8.5 tail - display the end of afile
tail displaysthetail, or end, of thefile.

Syntax

tail [optiong] file
Common Options
-number number of lines to display, counting from the bottom of the file

Examples

The default is to display the last 10 lines, but you can specify different line or byte numbers, or a
different starting point within thefile. To display the last 30 lines of afile use the -number style:

% tail -30 filename

32 © 1998 University Technology Services, The Ohio State University Introduction to Unix

System Resources

CHAPTER 4

System Resources &

Printing

4.1 System Resources

Commands to report or manage system resources.

TABLE 4.1

System Resource Commands

Command/Syntax

What it will do

chsh (passwd -e/-s) username login_shell

change the user’ s login shell (often only by the superuser)

date [optiong]

report the current date and time

df [options] [resource]

report the summary of disk blocks and inodes free and in use

du [options] [directory or filg]

report amount of disk space in use+

hostname/uname

display or set (super-user only) the name of the current machine

kill [options] [-SIGNAL] [pid#] [%job]

send a signal to the process with the process id number (pid#) or job
control number (%n). The default signal isto kill the process.

man [options] command

show the manual (man) page for acommand

passwd [options]

set or change your password

ps [optiong]

show status of active processes

script file

saves everything that appears on the screen to file until exit is executed

stty [options]

set or display terminal control options

whereis [options] command

report the binary, source, and man page locations for the command
named

which command

reports the path to the command or the shell aliasin use

who or w

report who islogged in and what processes are running

Introduction to Unix

© 1998 University Technology Services, The Ohio State University

33

System Resources & Printing

4.1.1 df - summarize disk block and file usage

df is used to report the number of disk blocks and inodes used and free for each file system. The
output format and valid options are very specific to the OS and program version in use.

Syntax

df [options] [resource]

Common Options
- local file systems only (SVR4)

-k report in kilobytes (SVR4)
Examples

{unix prompt 1} df
Filesystem kbytes used avail capacity Mounted on
/dev/sd0a 20895 19224 0 102% /
/dev/sd0h 319055 131293 155857 46% /usr
/dev/sdlg 637726 348809 225145 61% /usr/local
/dev/sdla 240111 165489 50611 77%
/home/guardian

peri:/usr/local/backup

1952573 976558 780758 56%
/usr/local /backup
peri:/home/peri 726884 391189 263007 60% /home /peri
peri:/usr/spool/mail 192383 1081 172064 1%
/var/spool/mail
peri:/acs/peri/2 723934 521604 129937 80% /acs/peri/2

4.1.2 du -report disk space in use
du reports the amount of disk space in use for the files or directories you specify.

Syntax

du [options] [directory or fil€e]

Common Options

-a display disk usage for each file, not just subdirectories
-S display a summary total only
-k report in kilobytes (SVR4)

34 © 1998 University Technology Services, The Ohio State University Introduction to Unix

System Resources

Examples

{unix prompt 3} du

1
1
1
20
86

J.em

JMail

JNews
Juc

{unix prompt 4} du-auc

7

N S = =)

20

uc/unixgrep.txt

uc/editors.txt

uc/.emacs

uc/.exrc

uc/telnet.ftp

uc/unig.tee.txt
uc

4.1.3 ps - show status of active processes

ps is used to report on processes currently running on the system. The output format and valid
options are very specific to the OS and program version in use.

Syntax

ps [options]

Common Options

BSD

SVR4

all processes, all users
environment/everything

process group leaders as well

long format

user oriented report

even processes not executed from terminals
full listing

report first 132 characters per line

note -- Because the ps command is highly system-specific, it is recommended that you consult the
man pages of your system for details of options and interpretation of ps output.

Introduction to Unix

© 1998 University Technology Services, The Ohio State University 35

System Resources & Printing

Examples

{unix prompt 5} ps

PID
15549
15588
15594
15595
15486
15599
15600

TT
PO
poO
PO
PO

STAT
Iw
Iw
Iw
Iw

pl S

pl

pl R

TIME

0
0
0
0
0
0
0

:00
:00
:00
:00
:00
:00
:00

COMMAND

-tcsh (tcsh)

man nice

sh -c¢ less /tmp/manl5588
less /tmp/manl5588

-tcsh (tcsh)

emacs unixgrep.txt

ps

4.1.4 Kill -terminate a process

kill sends asignal to a process, usually to terminate it.

Syntax

kill [-signal] process-id

Common Options

Examples

{unix prompt 9} kill -I
HUPINT QUIT ILL TRAPIOT EMT FPEKILL BUS SEGV SYSPIPE ALRM TERM URG STOP
TSTP CONT CHLD TTIN TTOU 10 XCPU XFSZ VTALRM PROF WINCH LOST USR1 USR2

displays the available kill signals:

The -KILL signal, also specified as -9 (because it is 9th on the above list), is the most commonly
used kill signal. Once seen, it can't be ignored by the program whereas the other signals can.

{unix prompt 10} kill -9 15599

[1] +Killed

emacs unixgrep.txt

36 © 1998 University Technology Services, The Ohio State University

Introduction to Unix

System Resources

4.1.5 who - list current users
who reports who islogged in at the present time.

Syntax

who [ami]

Examples

beauty condronswho
wmtell ttypl Apr 21 20:15
fbwalk ttyp2 Apr 21 23:21
stwang ttyp3 Apr 21 23:22

apple.acs.ohio-s)
worf.acs.ohio-st)
127.99.25.8)

david ttyp4 Apr 21 22:27 slipl-61l.acs.ohi)
tgardner ttypb Apr 21 23:07 picard.acs.ohio-)
)
gtl27 ttyp7 Apr 21 23:24 data.acs.ohio-st)
)

ccchang ttypS8 Apr 21 23:32 slip3-10.acs.ohi

condron ttypc Apr 21 23:38 lcondron-mac.acs)
dgildman ttype Apr 21 22:30

fcbetz ttyg2 Apr 21 21:12

(
(
(
(
(
awallace ttypé6 Apr 21 23:00 (ts31-4.homenet.o
(
(
(
(slip3-36.acs.ohi
(

)
ts24-10.homenet.)

beauty condron>who am i

beauty!condron ttypc Apr 21 23:38 (lcondron-mac.acs)

4.1.6 whereis - report program locations

whereis reports the filenames of source, binary, and manual page files associated with command(s).

Syntax

whereis [options] command(s)

Common Options

-b report binary files only

-m report manual sections only

-S report source files only
Examples

brigadier: condron [69]> whereis Mail
Mail: /usr/ucb/Mail /usr/lib/Mail.help /usr/lib/Mail.rc /usr/man/manl/Mail. 1

Introduction to Unix © 1998 University Technology Services, The Ohio State University

37

System Resources & Printing

brigadier: condron [70]> whereis -b Mail
Mail: /usr/ucb/Mail /usr/lib/Mail.help /usr/lib/Mail.rc

brigadier: condron [71]> whereis-m Mail
Mail: /usr/man/manl/Mail.1

4.1.7 which -report the command found

which will report the name of the file that is be executed when the command isinvoked. Thiswill be
the full path name or the alias that’s found first in your path.

Syntax

which command(s)

example--

brigadier: condron [73]> which Mail
Jusr/ucb/Mail

4.1.8 hostname/uname - name of machine
hostname (uname -n on SysV) reports the host name of the machine the user islogged into, e.g.:

brigadier: condron [91]> hostname
brigadier

uname has additional optionsto print information about system hardware type and software version.

4.1.9 script - record your screen /O

script creates a script of your session input and output. Using the script command, you can capture
all the data transmission from and to your terminal screen until you exit the script program. This can
be useful during the programming-and-debugging process, to document the combination of things
you have tried, or to get a printed copy of it all for later perusal.

Syntax
script [-a] [filg] <...> exit

Common Options

-a append the output to file
typescript isthe name of the default file used by script.

Y ou must remember to type exit to end your script session and close your typescript file.

38 © 1998 University Technology Services, The Ohio State University Introduction to Unix

System Resources

Examples

beauty condron>script

Script started,

beauty condrons>ps

PID
23323
23327
18706
23315
23321
23322

3400

TT
P8
P8
pa
pa
pa
pa
pb

S

n n 4 n ™

I

TAT TIME

0:

0:
:00
:00
:00
:00
:00

o O O o o

file

00
00

is typescript

COMMAND

-h -1
ps

-tcsh
emacs
script
script
-tcsh

beauty condron>kill -9 23315
beauty condron>date
Mon Apr 22 22:29:44 EDT 1996

beauty condronsexit

exit

Script done,

[1] + Killed

beauty condrons>cat typescript

Script started on Mon Apr 22 22:28:36 1996

beauty condrons>ps

PID
23323
23327
18706
23315
23321
23322

3400

TT
p8
P8
pa
pa
pa
pa
pb

S

n nn 4 n ™ 0

I

TAT TIME
:00
:00
:00
:00
:00
:00
0:

o O O o o o

00

(tcsh)

(tcsh)

(tcsh)

file is typescript

emacs

COMMAND

-h -1
ps

-tcsh
emacs
script
script
-tcsh

(tcsh)

(tcsh)

(tcsh)

beauty condron>kill -9 23315

beauty condrons>date
Mon Apr 22 22:29:44 EDT 1996

beauty condrons>exit

exit

script done on Mon Apr 22 22:30:02 1996

beauty condrons

Introduction to Unix

© 1998 University Technology Services, The Ohio State University

39

System Resources & Printing

4.1.10 date - current date and time

date displays the current data and time. A superuser can set the date and time.

Syntax

date [options] [+format]

Common Options

-u use Universal Time (or Greenwich Mean Time)
+for mat specify the output format
%a weekday abbreviation, Sun to Sat
%h month abbreviation, Jan to Dec
%] day of year, 001 to 366
%n <new-line>
%t <TAB>
%y last 2 digits of year, 00 to 99
%D MM/DD/YY date
%H hour, 00 to 23
%M minute, 00 to 59
%S second, 00 to 59
%T HH:MM:SStime
Examples

beauty condron>date
Mon Jun 10 09:01:05 EDT 1996

beauty condron>date -u
Mon Jun 10 13:01:33 GMT 1996

beauty condron>date +%a%t%D
Mon 06/10/96

beauty condron>date '+%y: %'
96:162

40 © 1998 University Technology Services, The Ohio State University

Introduction to Unix

Print Commands

4.2 Print Commands

TABLE 4.2 Printing Commands
Command/Syntax What it will do
Ipg (Ipstat) [options] show the status of print jobs
Ipr (Ip) [optiong] file print to defined printer
[prm (cancel) [optiong] remove a print job from the print queue
pr [optiong] [fil€] filter thefile and print it on the terminal

The print commands allow us to print files to standard output (pr) or to aline printer (Ip/lpr) while
filtering the output. The BSD and SysV printer commands use different names and different options
to produce the sameresults: Ipr, Iprm, and Ipq vs|p, cancel, and Ipstat for the BSD and SysV submit,
cancel, and check the status of a print job, respectively.

4.2.1 Ip/lpr - submit a print job
Ip and Ipr submit the specified file, or standard input, to the printer daemon to be printed. Eachjobis
given aunique request-id that can be used to follow or cancel the job whileit’sin the queue.
Syntax
Ip [optiong] filename

Ipr [optiong] filename

Common Options

Ip [pr function

-n number -#number number of copies

-t title -Ttitle titlefor job

-d destination -Pprinter printer name

-C (default) copy fileto queue before printing
(default) -S don't copy file to queue before printing
-0 option additional options, e.g. nobanner

Files beginning with the string "% !" are assumed to contain PostScript commands.
Examples

To print the file ssh.ps:

% Ip ssh.ps
request id is|p-153 (1 file(s))

This submits the job to the queue for the default printer, Ip, with the request-id 1p-153.

Introduction to Unix © 1998 University Technology Services, The Ohio State University 41

System Resources & Printing

4.2.2 lIpstat/lpg - check the status of a print job

Y ou can check the status of your print job with Ipstat or Ipg.

Syntax

Ipstat [options]
Ipqg [options] [job#] [username]

Common Options

Ipstat Ipg function

-d (defaults to Ip) list system default destination

-S summarize print status

-t print all statusinformation

-u [login-1D-list] user list

-V list printers known to the system

-p printer_dest -Pprinter_dest list status of printer, printer_dest
Examples

% Ipstat

Ip-153 frank 208068 Apr2915:14o0nlp

4.2.3 cancel/lprm - cancel a print job

Any user can cancel only heir own print jobs.

Syntax

canced [request-1D] [printer]
Iprm [options] [job#] [username]

Common Options

cancel [prm
-Pprinter
-u [login-1D-list]
Examples

To cancel the job submitted above:
% cancel Ip-153

function
specify printer
al jobsfor user
user list

42 © 1998 University Technology Services, The Ohio State University

Introduction to Unix

Print Commands

4.2.4 pr - prepare files for printing

pr prints header and trailer information surrounding the formatted file. Y ou can specify the number
of pages, lines per page, columns, line spacing, page width, etc. to print, along with header and trailer
information and how to treat <tab> characters.

Syntax

pr [optiong] file

Common Options

+page_number start printing with page page_number of the formatted input file
-column number of columns
-a modify -column option to fill columns in round-robin order
-d double spacing
-g[char][gap] tab spacing
-h header_string header for each page
-l lines lines per page
-t don't print the header and trailer on each page
-w width width of page
Examples

The file containing the list of P. G. Wodehouse's Lord Emsworth books could be printed, at 14 lines
per page (including 5 header and 5 (empty) trailer lines) below, where the -e option specifies the
<tab> conversion style:

% pr -1 14 -e42 wodehouse

Apr 29 11:11 1996 wodehouse emsworth books Page 1

Something Fresh [1915] Uncle Dynamite [1948]

Leave it to Psmith [1923] Pigs Have Wings [1952]
Summer Lightning [1929] Cocktail Time [1958]

Heavy Weather [1933] Service with a Smile [1961]

Introduction to Unix © 1998 University Technology Services, The Ohio State University 43

System Resources & Printing

Apr 29 11:11 1996 wodehouse emsworth books Page 2

Blandings Castle and Elsewhere [1935] Galahad at Blandings [1965]
Uncle Fred in the Springtime [1939] A Pelican at Blandings [1969]
Full Moon [1947] Sunset at Blandings [1977]

© 1998 University Technology Services, The Ohio State University Introduction to Unix

Print Commands

CHAPTER 5 Shdls

The shell sits between you and the operating system, acting as a command interpreter. |t reads your
terminal input and trans ates the commands into actions taken by the system. The shell is analogous
to command.comin DOS. When you log into the system you are given adefault shell. When the shell
starts up it reads its startup files and may set environment variables, command search paths, and
command aliases, and executes any commands specified in these files.

The original shell wasthe Bourne shell, sh. Every Unix platform will either have the Bourne shell, or
aBourne compatible shell available. It has very good features for controlling input and output, but is
not well suited for the interactive user. To meet the latter need the C shell, csh, was written and is now
found on most, but not al, Unix systems. It uses C type syntax, the language Unix is written in, but
has a more awkward input/output implementation. It has job control, so that you can reattach a job
running in the background to the foreground. It aso provides a history feature which allows you to
modify and repeat previously executed commands.

The default prompt for the Bourne shell is$ (or #, for theroot user). The default prompt for the C shell
is%.

Numerous other shells are available from the network. Almost all of them are based on either sh or
csh with extensions to provide job control to sh, alow in-line editing of commands, page through
previously executed commands, provide command name completion and custom prompt, etc. Some
of the more well known of these may be on your favorite Unix system: the Korn shell, ksh, by David
Korn and the Bourne Again SHell, bash, from the Free Software Foundations GNU project, both based
on sh, the T-C shell, tcsh, and the extended C shell, cshe, both based on csh. Below we will describe
some of the features of sh and csh so that you can get started.

Introduction to Unix © 1998 University Technology Services, The Ohio State University 45

Shells

5.1 Built-in Commands

The shells have a number of built-in, or native commands. These commands are executed directly in
the shell and don’t have to call another program to be run. These built-in commands are different for
the different shells.

5.1.1 Sh
For the Bourne shell some of the more commonly used built-in commands are:

null command
source (read and execute) commands from afile

case case conditional loop

cd change the working directory (default is $HOME)

echo write a string to standard output

eval evaluate the given arguments and feed the result back to the shell
exec execute the given command, replacing the current shell

exit exit the current shell

export share the specified environment variable with subsequent shells
for for conditional loop

if if conditional loop

pwd print the current working directory

read read aline of input from stdin

set set variables for the shell

test evaluate an expression as true or false

trap trap for atyped signal and execute commands

umask set adefault file permission mask for new files

unset unset shell variables

wait wait for a specified process to terminate

while while conditional loop

46 © 1998 University Technology Services, The Ohio State University Introduction to Unix

Built-in Commands

5.1.2 Csh

alias

bg

cd

echo

eval

exec

exit

fg

foreach

glob

history

if

jobs

kill

limit

logout

nice command
nohup command
popd

pushd

stop
switch
umask
unalias
unset
unsetenv
wait
while

For the C shell the more commonly used built-in functions are:

assign a name to a function

put ajob into the background

change the current working directory

write a string to stdout

evaluate the given arguments and feed the result back to the shell
execute the given command, replacing the current shell

exit the current shell

bring ajab to the foreground

for conditional loop

do filename expansion on the list, but no "\" escapes are honored
print the command history of the shell

if conditional loop

list or control active jobs

kill the specified process

set limits on system resources

terminate the login shell

lower the scheduling priority of the process, command

do not terminate command when the shell exits

pop the directory stack and return to that directory

change to the new directory specified and add the current one to the directory
stack

recreate the hash table of pathsto executable files
repeat a command the specified number of times
set ashell variable

set an environment variable for this and subseguent shells
source (read and execute) commands from afile
stop the specified background job

switch conditional 1oop

set adefault file permission mask for new files
remove the specified alias name

unset shell variables

unset shell environment variables

wait for all background processes to terminate
while conditional loop

Introduction to Unix

© 1998 University Technology Services, The Ohio State University 47

Shells

5.2 Environment Variables

Environmental variables are used to provide information to the programs you use. Y ou can have both
global environment and local shell variables. Global environment variables are set by your login
shell and new programs and shellsinherit the environment of their parent shell. Local shell variables
are used only by that shell and are not passed on to other processes. A child process cannot pass a
variable back to its parent process.

The current environment variables are displayed with the "env' or "printenv' commands. Some
COMMON ONes are:

e DISPLAY The graphical display to use, e.g. nyssa:0.0

e EDITOR The path to your default editor, e.g. /usr/bin/vi

e GROUP Y our login group, e.g. staff

e HOME Path to your home directory, e.g. /home/frank

e HOST The hostname of your system, e.g. nyssa

e IFS Internal field separators, usually any white space (defaults to tab, space
and <newline>)

e LOGNAME The name you login with, e.g. frank

e PATH Paths to be searched for commands, e.g. /usr/bin:/usr/ucb:/usr/local/bin

e PS1 The primary prompt string, Bourne shell only (defaultsto $)

o PS2 The secondary prompt string, Bourne shell only (defaultsto >)

e SHELL Thelogin shell you're using, e.g. /usr/bin/csh

e TERM Y our terminal type, e.g. xterm

e USER Y our username, e.g. frank

Many environment variableswill be set automatically when you login. Y ou can modify them or define
others with entries in your startup files or at anytime within the shell. Some variables you might want
to change are PATH and DISPLAY. The PATH variable specifies the directories to be automatically
searched for the command you specify. Examples of this are in the shell startup scripts below.

You set aglobal environment variable with acommand similar to the following for the C shell:

% setenv NAME value
and for Bourne shell:

$ NAME=value; export NAME
Y ou can list your global environmental variableswith the env or printenv commands. Y ou unset them
with the unsetenv (C shell) or unset (Bourne shell) commands.

To set alocal shell variable use the set command with the syntax below for C shell. Without options
set displays al thelocal variables.

% set name=value
For the Bourne shell set the variable with the syntax:

$ name=value

The current value of the variable is accessed viathe "$name", or "${name}", notation.

48 © 1998 University Technology Services, The Ohio State University Introduction to Unix

The Bourne Shell, sh

5.3 The Bourne Shell, sh

Sh usesthe startup file .profile in your home directory. There may also be a system-wide startup file,
e.g. /etc/profile. If so, the system-wide one will be sourced (executed) before your local one.

A simple .profile could be the following:

PATH=/usr/bin:/usr/uch:/usr/local/bin:. # set the PATH

export PATH # so that PATH is available to subshells
Set a prompt

PS1="{ "hostname" "whoami'} " # set the prompt, defaultis"$"

functions

Is() { /bin/ls -sbF "$@";}

() { Is-a "$@";}

Set the termina type

stty erase H # set Control-H to be the erase key

eva ‘tset -Q-s-m " xterm"” # prompt for the terminal type, assume xterm
#

umask 077

Whenever a# symbol is encountered the remainder of that line istreated asacomment. Inthe PATH
variable each directory is separated by a colon (:) and the dot (.) specifies that the current directory is
in your path. If the latter is not set it’s a sSimple matter to execute a program in the current directory
by typing:

Jprogram_name

It's actually a good idea not to have dot (.) in your path, as you may inadvertently execute a program
you didn’t intend to when you cd to different directories.

A variable set in .profile is set only in the login shell unless you "export” it or source .profile from
another shell. In the above example PATH is exported to any subshells. Y ou can source afile with
the built-in"." command of sh, i.e.:

. [.profile
Y ou can make your own functions. In the above example the function |l resultsin an "Is -al" being
done on the specified files or directories.

With stty the erase character is set to Control-H (“H), which is usually the Backspace key.

The tset command prompts for the terminal type, and assumes "xterm” if we just hit <CR>. This
command is run with the shell built-in, eval, which takes the result from the tset command and uses it
as an argument for the shell. In this case the "-s" option to tset sets the TERM and TERM CAP
variables and exports them.

Thelast line in the example runs the umask command with the option such that any files or directories
you create will not have read/write/execute permission for group and other.

For further information about sh type "man sh" at the shell prompt.

Introduction to Unix © 1998 University Technology Services, The Ohio State University 49

Shells

54 T

he C Shell, csh

Csh uses the startup files .cshrc and .login. Some versions use a system-wide startup file, e.g.
/etc/csh.login. Your .login fileis sourced (executed) only whenyoulogin. Your .cshrcfileissourced
every time you start a csh, including when you login. It has many similar features to .profile, but a

different style of doing things.

Here we use the set or setenv commands to initialize avariable, where

set is used for this shell and setenv for this and any subshells. The environment variables: USER,
TERM, and PATH, are automatically imported to and exported from the user, term, and path
variables of the csh. So setenv doesn’'t need to be done for these. The C shell uses the symboal, ~, to
indicate the user’ shome directory in apath, asin ~/.cshrc, or to specify another user’ slogin directory,

asin ~username/.cshrc.

Predefined variables used by the C shell include:

e argv
e cwd

e history

e home

e ignor eeof
e noclobber
e noglob

e path

e prompt

e savehist

e shell

e Status

e term

o user
A simple .cshrc could be:

Thelist of arguments of the current shell

The current working directory

Sets the size of the history list to save

The home directory of the user; starts with SHOME

When set ignore EOF ("D) from terminals

When set prevent output redirection from overwriting existing files
When set prevent filename expansion with wildcard pattern matching
The command search path; starts with $PATH

Set the command line prompt (default is %)

number of linesto savein the history list to save in the .history file
The full pathname of the current shell; starts with $SHEL L

The exit status of the last command (O=normal exit, 1=failed
command)

Y our terminal type, starts with $STERM
Y our username, starts with $USER

set path=(/usr/bin /usr/ucb /usr/local/bin ~/bin.) # set the path

set prompt = "{*hosthame’ ‘whoami* 1} " # set the primary prompt; default is " %"

set noclobber # don't redirect output to existing files

set ignoreeof #ignore EOF (D) for this shell

et history=100 savehist=50 # keep ahistory list and save it between logins
aliases

aias h history # alias h to "history"

alias|s"/usr/bin/ls -sbF" #diaslsto"ls-sbF"

diasll Is-d #diasll to"ls-shFal" (combining these options with those for "Is* above)
dliascd 'cd \I*;pwd # dlias cd so that it prints the current working directory after the change
umask 077

50 © 1998 University Technology Services, The Ohio State University

Introduction to Unix

Job Control

Some new features here that we didn’t see in .profile are noclobber, ignoreeof, and history.
Noclobber indicates that output will not be redirected to existing files, while ignor eeof specifies that
EOF ("D) will not cause the login shell to exit and log you off the system.

With the history feature you can recall previously executed commands and re-execute them, with
changesif desired.

An alias alows you to use the specified alias name instead of the full command. Inthe"Is" example
above, typing "Is" will result in "/usr/bin/ls -sbF" being executed. Y ou can tell which "Is" command
isin your path with the built-in which command, i.e.:

which Is
Is: aliased to /usr/bin/ls -sbF
A simple .login could be:
#.login
stty erase *H # set Control-H to be the erase key
set noglob # prevent wild card pattern matching
eva ‘tset -Q -s-m’:?xterm’ # prompt for the terminal type, assume "xterm"
unset noglob # re-enable wild card pattern matching

Setting and unsetting noglob around tset preventsit from being confused by any csh filenamewild card
pattern matching or expansion.

Should you make any changesto your startup filesyou can initiate the change by sourcing the changed
file. For csh you do this with the built-in source command, i.e.:

source .cshrc
For further information about csh type "man csh” at the shell prompt.

5.5 Job Control

With the C shell, csh, and many newer shells including some newer Bourne shells, you can put jobs
into the background at anytime by appending "&" to the command, as with sh. After submitting a
command you can also do this by typing ~ Z (Control-Z) to suspend the job and then "bg" to put it into
the background. To bring it back to the foreground type "fg".

Y ou can have many jobs running in the background. When they are in the background they are no
longer connected to the keyboard for input, but they may still display output to the terminal,
interspersing with whatever else istyped or displayed by your current job. You may want to redirect
I/O to or from files for the job you intend to background. Your keyboard is connected only to the
current, foreground, job.

The built-in jobs command allows you to list your background jobs. Y ou can use the kill command to
kill abackground job. With the % n notation you can reference the nth background job with either of
these commands, replacing n with the job number from the output of jobs. So kill the second
background job with "kill %2" and bring the third job to the foreground with "fg %3".

Introduction to Unix © 1998 University Technology Services, The Ohio State University 51

Shells

5.6 History

The C shell, the Korn shell and some other more advanced shells, retain information about the former
commands you’ ve executed in the shell. How history is done will depend on the shell used. Here
we' |l describe the C shell history features.

Y ou can use the history and savehist variables to set the number of previously executed commands
to keep track of in this shell and how many to retain between logins, respectively. You could put a
line such asthe following in .cshrc to save the last 100 commandsin this shell and the last 50 through
the next login.

et history=100 savehist=50
The shell keepstrack of the history list and savesit in ~/.history between logins.

Y ou can use the built-in history command to recall previous commands, e.g. to print the last 10:

% history 10

52 cd workshop
53 Is

54 cd unix_intro
55 Is

56 pwd

57 date

58 w

59 dias

60 history

61 history 10

Y ou can repeat the last command by typing !!:
% !!
53 Is
54 cd unix_intro
55 Is
56 pwd
57 date
58 w
59 dias
60 history
61 history 10
62 history 10

52 © 1998 University Technology Services, The Ohio State University Introduction to Unix

History

Y ou can repeat any numbered command by prefacing the number with a!, e.g.:

% !57
date

Tue Apr 9 09:55:31 EDT 1996

Or repeat acommand starting with any string by prefacing the starting unique part of the string with a

I, eq.
% !da
date

Tue Apr 9 09:55:31 EDT 1996

When the shell evaluates the command line it first checks for history substitution before it interprets
anything else. Should you want to use one of these special characters in a shell command you will

need to escape, or quote it first, with a \ before the character, i.e. \!.

characters are summarized in the following table.

The history substitution

TABLE 5.1 C Shell History Substitution
Command Substitution Function
]| repeat last command
In repeat command number n
I-n repeat command n from last
Istr repeat command that started with string str
1?str? repeat command with str anywhere on the line
1?2str 7% select the first argument that had str in it
I repeat the last command, generally used with a modifier
I'n select the nth argument from the last command (n=0 is the command name)
I:'n-m select the nth through mth arguments from the last command
n select the first argument from the last command (same as!:1)
1$ select the last argument from the last command
I* select all arguments to the previous command
I:n* select the nth through last arguments from the previous command
I:n- select the nth through next to last arguments from the previous command
Astrifstron replace str1 with str2 initsfirst occurrence in the previous command
In:s/str1/str2/ substitute str1 with str2 in its first occurrence in the nth command, ending with ag
substitute globally

Additional editing modifiers are described in the man page.

Introduction to Unix

© 1998 University Technology Services, The Ohio State University

53

Shells

5.7 Changing your Shell

To change your shell you can usually usethe "chsh" or "passwd -€' commands. The option flag, here
-e, may vary from system to system (-son BSD based systems), so check the man page on your system
for proper usage. Sometimes thisfeature is disabled. If you can’'t change your shell check with your
System Administrator.

The new shell must be the full path name for avalid shell on the system. Which shells are available
to you will vary from system to system. The full path name of a shell may also vary. Normally,
though, the Bourne and C shells are standard, and available as:

/bin/sh

/bin/csh
Some systems will also have the Korn shell standard, normally as:

/bin/ksh
Some shells that are quite popular, but not normally distributed by the OS vendors are bash and tcsh.
These might be placed in/bin or alocally defined directory, e.g. /usr/local/bin or /opt/local/bin. Should
you choose a shell not standard to the OS make sure that this shell, and al login shells available on the
system, are listed in the file /etc/shells. If thisfile exists and your shell isnot listed in thisfile thefile
transfer protocol daemon, ftpd, will not let you connect to this machine. If thisfile does not exist only
accountswith "standard" shells are allowed to connect via ftp.

Y ou can awaystry out a shell before you set it as your default shell. To do thisjust type in the shell
name as you would any other command.

54 © 1998 University Technology Services, The Ohio State University Introduction to Unix

File Descriptors

CHAPTER 6 Specia Unix Features

One of the most important contributions Unix has made to Operating Systems is the provision of
many utilities for doing common tasks or obtaining desired information. Another isthe standard way
in which data is stored and transmitted in Unix systems. This allows data to be transmitted to afile,
the terminal screen, or a program, or from afile, the keyboard, or a program; always in a uniform
manner. The standardized handling of data supports two important features of Unix utilities: 1/0
redirection and piping.

With output redirection, the output of a command is redirected to a file rather than to the terminal
screen. With input redirection, the input to a command is given via afile rather than the keyboard.
Other tricks are possible with input and output redirection as well, as you will see. With piping, the
output of acommand can be used asinput (piped) to asubsequent command. In thischapter we discuss
many of the features and utilities available to Unix users.

6.1 File Descriptors

There are 3 standard file descriptors:

e stdin 0 Standard input to the program
e stdout 1 Standard output from the program
e stderr 2 Standard error output from the program

Normally input is from the keyboard or a file. Output, both stdout and stderr, normally go to the
terminal, but you can redirect one or both of these to one or morefiles.

You can aso specify additional file descriptors, designating them by a number 3 through 9, and
redirect 1/0 through them.

6.2 File Redirection

Output redirection takes the output of a command and places it into a named file. Input redirection
reads the file as input to the command. The following table summarizes the redirection options.

Introduction to Unix © 1998 University Technology Services, The Ohio State University 55

Specia Unix Features

TABLE 6.1 File Redirection
Symbol Redirection
> output redirect
>l same as above, but overrides noclobber option of csh
>> append output
>> same as above, but overrides noclobber option on csh and createsthefileif

it doesn’'t already exist.
| pipe output to another command

< input redirection

<<String read from standard input until "String" is encountered as the only thing on the line.
Also known as a"here document" (see Chapter 8).

<<\String same as above, but don’'t allow shell substitutions

An example of output redirectionis:

cat filel file2 > file3
The above command concatenates filel then file2 and redirects (sends) the output to file3. If file3
doesn't already exist it is created. If it does exist it will either be truncated to zero length before the
new contents are inserted, or the command will be rejected, if the noclobber option of the csh is set.
(Seethe csh in Chapter 4). The original files, filel and file2, remain intact as separate entities.

Output is appended to afilein the form:

cat filel >> file2
This command appends the contents of filel to the end of what already exists in file2. (Does not
overwrite file2).

Input is redirected from afile in the form:

program < file
This command takes the input for program from file.

To pipe output to another command use the form:
command | command

This command makes the output of the first command the input of the second command.

6.2.1 Csh
>& file redirect stdout and stderr to file
>>& append stdout and stderr to file
|& command pipe stdout and stderr to command

To redirect stdout and stderr to two separate files you need to first redirect stdout in a sub-shell, asin:

% (command > out_file) >& err_file

56 © 1998 University Technology Services, The Ohio State University Introduction to Unix

File Redirection

6.2.2 Sh
2> file direct stderr tofile
>file2>&1 direct both stdout and stderr to file
>>file2>& 1 append both stdout and stderr to file
2>& 1| command pipe stdout and stderr to command

To redirect stdout and stderr to two separate files you can do:

$ command 1> out_file 2> err_file

or, since the redirection defaults to stdout:

$command > out_file 2> err_file

With the Bourne shell you can specify other file descriptors (3 through 9) and redirect output through
them. Thisisdone with the form:

n>&m redirect file descriptor n to file descriptor m

We used the above to send stderr (2) to the same place as stdout (1), 2>& 1, when we wanted to have
error messages and normal messages to go to file instead of the terminal. 1f we wanted only the error
messages to go to the file we could do this by using a place holder file descriptor, 3. We'll first
redirect 3 to 2, then redirect 2 to 1, and finally, we'll redirect 1 to 3:

$ (command 3>& 2 2>& 1 1>& 3) > file

This sends stderr to 3 then to 1, and stdout to 3, whichisredirected to 2. So, in effect, we' ve reversed
file descriptors 1 and 2 from their normal meaning. We might use thisin the following example:

$ (cat file 3>&22>& 1 1>& 3) > errfile

So if file is read the information is discarded from the command output, but if file can’'t be read the
error messageis put in errfile for your later use.

Y ou can close file descriptors when you' re done with them:

m<&- closes an input file descriptor
<&- closes stdin

m>& - closes an output file descriptor
>& - closes stdout

Introduction to Unix © 1998 University Technology Services, The Ohio State University 57

Specia Unix Features

6.3 Other Special Command Symbols

In addition to file redirection symbols there are a number of other special symbols you can use on a
command line. These include:

‘command'

#

command separator
run the command in the background

run the command following this only if the previous command completes
successfully, e.g.:
grep stringfile& & cat file

run the command following only if the previous command did not complete
successfully, e.qg.:

grep string file || echo " String not found."

the commands within the parentheses are executed in a subshell. The output
of the subshell can be manipulated as above.

literal quotation marks. Don’t allow any special meaning to any characters
within these quotations.

escape the following character (take it literally)

regular quotation marks. Allow variable and command substitution with
theses quotations (does not disable $ and \ within the string).

take the output of this command and substitute it as an argument(s) on the
command line

everything following until <newline> isacomment

The \ character can also be used to escape the <newline> character so that you can continue a long
command on more than one physical line of text.

6.4 Wild Cards

The shell and some text processing programs will allow meta-characters, or wild cards, and replace
them with pattern matches. For filenames these meta-char acter s and their uses are:

?

[abc...]

[a-€]

['def]
{abc,bcd,cde}

~user

match any single character at the indicated position

match any string of zero or more characters

match any of the enclosed characters

match any charactersin the range a,b,c,d,e

match any characters not one of the enclosed characters, sh only

match any set of characters separated by comma (,) (no spaces), csh only
home directory of the current user, csh only

home directory of the specified user, csh only

58 © 1998 University Technology Services, The Ohio State University Introduction to Unix

Regular Expression Syntax

CHAPTER 7 Text Procng

7.1 Regular Expression Syntax

Some text processing programs, such as grep, egrep, sed, awk and vi, let you search on patterns
instead of fixed strings. These text patterns are known as regular expressions. You form aregular
expression by combining normal characters and special characters, also known as meta-char acters,
with the rules below. With these regular expressions you can do pattern matching on text data.
Regular expressions come in three different forms:

e Anchors which tie the pattern to alocation on the line
e Character sets which match a character at a single position
e Modifiers which specify how many times to repeat the previous expression

Regular expression syntax is as follows. Some programs will accept all of these, others may only
accept some.

match any single character except <newline>

* match zer o or mor e instances of the single character (or meta-character)
immediately preceding it

[abc] match any of the characters enclosed

[a-d] match any character in the enclosed range

[N exp] match any character not in the following expression

~abc the regular expression must start at the beginning of the line (Anchor)

abc$ the regular expression must end at the end of the line (Anchor)

\ treat the next character literally. Thisisnormally used to escape the meaning

of special characterssuch as™." and "*".

\{n,m\} match the regular expression preceding this a minimum number of n times
and a maximum of m times (0 through 255 are allowed for n and m). The \{
and \} sets should be thought of as single operators. In this case the\
preceding the bracket does not escape its special meaning, but rather turns on
anew one.

\<abc\> will match the enclosed regular expression as long as it is a separate word.
Word boundaries are defined as beginning with a <newline> or anything
except aletter, digit or underscore (_) or ending with the same or aend-of-line
character. Againthe\< and \> sets should be thought of as single operators.

Introduction to Unix © 1998 University Technology Services, The Ohio State University 59

Text Processing

\(abc)

\n

&

regular
expression
cat

at

Xy*z

~cat

cat$

*

[cClat
[farzA-Z]
[0-9]%
[A-Z][A-Z]*
[A-Z]*

saves the enclosed pattern in a buffer. Up to nine patterns can be saved for
each line. Y ou can reference these latter with the \n character set. Again the
\('and \) sets should be thought of as single operators.

where n is between 1 and 9. This matches the nth expression previously
saved for thisline. Expressions are numbered starting from the left. The\n
should be thought of as a single operator.

print the previous search pattern (used in the replacement string)

There are afew meta-characters used only by awk and egrep. These are:

match one or more of the preceding expression

match zero or more of the preceding expression

separator. Match either the preceding or following expression.
group the regular expressions within and apply the match to the set.

Some examples of the more commonly used regular expressions are:

matches

the string cat

any occurrence of aletter, followed by at, such as cat, rat, mat, bat, fat, hat
any occurrence of an x, followed by zero or morey's, followed by a z.
cat at the beginning of theline

cat at the end of theline

any occurrence of an asterisk

cat or Cat

any occurrence of a non-al phabetic character

any line ending with a number

one or more upper case letters

Zero or more upper case letters (In other words, anything.)

© 1998 University Technology Services, The Ohio State University Introduction to Unix

Text Processing Commands

7.2 Text Processing Commands

TABLE 7.1 Text Processing Commands

Command/Syntax What it will do

awk/nawk [optiong] file scan for patternsin afile and process the results

grep/egrep/fgrep [options] 'search string' file | search the argument (in this case probably afile) for al occurrences
of the search string, and list them.

sed [optiong] file stream editor for editing files from a script or from the command line

7.2.1 grep
This section provides an introduction to the use of regular expressions and grep.

The grep utility is used to search for generalized regular expressions occurring in Unix files. Regular
expressions, such as those shown above, are best specified in apostrophes (or single quotes) when
specified in the grep utility. The egrep utility provides searching capability using an extended set of
meta-characters. The syntax of the grep utility, some of the available options, and afew examples are
shown below.

Syntax
grep [options] regexp [file]d]]

Common Options

-i ignore case

-C report only a count of the number of lines containing matches, not the
matches themselves

-V invert the search, displaying only lines that do not match

-n display the line number along with the line on which a match was found

-S work silently, reporting only the final status:

0, for match(es) found
1, for no matches
2, for errors
-l list filenames, but not lines, in which matches were found

Introduction to Unix © 1998 University Technology Services, The Ohio State University 61

Text Processing

Examples

Consider the following file:

{unix prompt 5} cat num.list

1 15 fifteen
2 14 fourteen
3 13 thirteen
4 12 twelve
5 11 eleven
6 10 ten

7 9 nine

8 8 eight

9 7 seven
10 6 six

11 5 five

12 4 four

13 3 three
14 2 two

15 1 one

Here are some grep examples using thisfile. Inthefirst we'll search for the number 15:

{unix prompt 6} grep '15' num.list
1 15 fifteen
15 1 one

Now we'll use the "-c" option to count the number of lines matching the search criterion:

{unix prompt 7} grep -¢ '15' num.list

2

Here we'll be a little more general in our search, selecting for all lines containing the character 1
followed by either of 1, 2 or 5:

{unix prompt 8} grep '1[125]"' num.list

1 15 fifteen
4 12 twelve
5 11 eleven
11 5 five
12 4 four
15 1 one

62

© 1998 University Technology Services, The Ohio State University

Introduction to Unix

Text Processing Commands

Now we' |l search for al lines that begin with a space:

{unix prompt 9} grep "M ' num.list

1

© 00 N O O A WD

15
14
13
12
11
10
9
8
7

fifteen
fourteen
thirteen
twelve
eleven
ten

nine
eight
seven

Or all linesthat don’t begin with a space:

{unix prompt 10} grep "\[*] num.list

10
11
12
13
14
15

6

P N W b~ Ol

SiX
five
four
three
two
one

The latter could also be done by using the -v option with the original search string, e.g.:

{unix prompt 11} grep -v " ' num.list

10
11
12
13
14
15

6

P N W b~ Ol

SiX
five
four
three
two
one

Here we search for all linesthat begin with the characters 1 through 9:

{unix prompt 12} grep "*[1-9]' num.list

10
11
12
13
14
15

6

P N W b~ Ol

Six
five
four
three
two
one

Introduction to Unix

© 1998 University Technology Services, The Ohio State University

63

Text Processing

This example will search for any instances of t followed by zero or mor e occurrences of e:

{unix prompt 13} grep 'te*' num.list

15 fifteen
2 14 fourteen
3 13 thirteen
4 12 twelve
6 10 ten
8 8 eight
13 3 three
14 2 two

This example will search for any instances of t followed by one or mor e occurrences of e:

{unix prompt 14} grep ‘tee*' num.list

1 15 fifteen
2 14 fourteen
3 13 thirteen
6 10 ten

We can aso take our input from a program, rather than afile. Here we report on any lines output by
the who program that begin with the letter |.

{unix prompt 15} who | grep "MI'
Icondron ttyp0 Dec 102:41 (Icondron-pc.acs.)

64 © 1998 University Technology Services, The Ohio State University Introduction to Unix

Text Processing Commands

7.2.2 sed

The non-interactive, stream editor, sed, edits the input stream, line by line, making the specified
changes, and sends the result to standard output.

Syntax
sed [options] edit_command [fil€e]

The format for the editing commands are:
[addressl[,address2]][function] [arguments]

where the addresses are optional and can be separated from the function by spaces or tabs. The
function isrequired. The arguments may be optional or required, depending on the function in use.

Line-number Addresses are decimal line numbers, starting from the first input line and incremented
by onefor each. If multipleinput files are given the counter continues cumulatively through thefiles.
The last input line can be specified with the "$" character.

Context Addresses are the regular expression patterns enclosed in slashes (/).

Commands can have 0, 1, or 2 comma-separated addresses with the following affects:

of addresses lines affected

0 every line of input

1 only lines matching the address

2 first line matching the first address and all lines until, and including, the line
matching the second address. The process is then repeated on subsequent
lines.

Substitution functions allow context searches and are specified in the form:

s/regular_expression_pattern/replacement_string/flag

and should be quoted with single quotes (’) if additional options or functions are specified. These
patterns are identical to context addresses, except that while they are normally enclosed in slashes (/),
any normal character is allowed to function as the delimiter, other than <space> and <newline>.
The replacement string is not a regular expression pattern; characters do not have special meanings
here, except:

& substitute the string specified by regular_expression_pattern
\n substitute the nth string matched by regular_expression_pattern enclosed in

\(,’\) pairs.

These special characters can be escaped with a backslash (\) to remove their special meaning.

Introduction to Unix © 1998 University Technology Services, The Ohio State University 65

Text Processing

Common Options

-e script edit script

-n don't print the default output, but only those lines specified by p or g///p
functions

-f script_file take the edit scripts from the file, script_file

Valid flags on the substitution functions include:

d delete the pattern
g globally substitute the pattern
p print theline

Examples

This example changes all incidents of acomma (,) into acommafollowed by a space (,) when doing
output:

% cat filey | sed §/,/,\ /g

The following example removes al incidents of Jr preceded by a space (Jr) infiley:

% cat filey | sed s\ Jr//g

To perform multiple operations on the input precede each operation with the -e (edit) option and
guote the strings. For example, to filter for lines containing "Date: " and "From: " and replace these
without the colon (2), try:

sed -e’'s/Date: /Date/’ -e’s/From: /From [/’

To print only those lines of the file from the one beginning with "Date:" up to, and including, the one
beginning with "Name:" try:

sed -n’/"Date:/,/"Name:/p’
To print only thefirst 10 lines of the input (a replacement for head):
sed -n 1,10p

66 © 1998 University Technology Services, The Ohio State University Introduction to Unix

Text Processing Commands

7.2.3 awk, nawk, gawk

awk is a pattern scanning and processing language. Its name comes from the last initials of the three
authors: Alfred. V. Aho, Brian. W. Kernighan, and Peter. J. Weinberger. nawk is new awk, a newer
version of the program, and gawk is gnu awk, from the Free Software Foundation. Each versionisa
little different. Here we'll confine ourselves to simple examples which should be the same for all
versions. On some OSs awk is really nawk.

awk searchesits input for patterns and performs the specified operation on each line, or fields of the
line, that contain those patterns. You can specify the pattern matching statements for awk either on
the command line, or by putting them in afile and using the -f program_file option.

Syntax
awk program [file]

where program is composed of one or more:

pattern { action }

fields. Each input line is checked for a pattern match with the indicated action being taken on a
match. This continues through the full sequence of patterns, then the next line of input is checked.

Input isdivided into recordsand fields. The default record separator is <newline>, and the variable
NR keeps the record count. The default field separator is whitespace, spaces and tabs, and the
variable NF keepsthe field count. Input field, FS, and record, RS, separators can be set at any timeto
match any single character. Output field, OFS, and record, ORS, separators can also be changed to
any single character, as desired. $n, where n is an integer, is used to represent the nth field of the
input record, while $0 represents the entire input record.

BEGIN and END are special patterns matching the beginning of input, before the first field is read,
and the end of input, after the last field is read, respectively.

Printing is allowed through the print, and formatted print, printf, statements.

Patterns may be regular expressions, arithmetic relational expressions, string-valued expressions,
and boolean combinations of any of these. For the latter the patterns can be combined with the
boolean operators below, using parentheses to define the combination:

I or
& & and
! not

Comma separated patterns define the range for which the pattern is applicable, e.g.:
[first/ Nlast/

selects al lines starting with the one containing first, and continuing inclusively, through the one
containing last.

Introduction to Unix © 1998 University Technology Services, The Ohio State University 67

Text Processing

To select lines 15 through 20 use the pattern range:

NR==15 NR==20
Regular expressions must be enclosed with slashes (/) and meta-characters can be escaped with the
backslash (\). Regular expressions can be grouped with the operators:

| or, to separate alternatives
+ one or more
? zero or one

A regular expression match can be either of:

~ contains the expression
I~ does not contain the expression

So the program:
$1 ~ /[Ff]rank/

istrueif the first field, $1, contains "Frank™ or "frank" anywhere within the field. To match afield
identical to "Frank" or "frank™ use:

$1 ~ /N Ff]rank$/

Relational expressions are allowed using the relational operators:

< less than

<= less than or equal to
== equal to

>= greater than or equal to
I= not equal to

> greater than

Offhand you don’'t know if variables are strings or numbers. If neither operand is known to be
numeric, than string comparisons are performed. Otherwise, a numeric comparison is done. In the
absence of any information to the contrary, a string comparison is done, so that:

$1>$2

will compare the string values. To ensure a numerical comparison do something similar to:
($1+0)>%2

The mathematical functions: exp, log and sgrt are built-in.

68 © 1998 University Technology Services, The Ohio State University Introduction to Unix

Text Processing Commands

Some other built-in functionsinclude:

index(s;t) returns the position of string swheret first occurs, or O if it doesn’t
length(s) returns the length of string s
substr(s,m,n) returns the n-character substring of s, beginning at position m

Arrays are declared automatically when they are used, e.g.:

arrfi] =$1
assigns thefirst field of the current input record to the ith element of the array.

Flow control statements using if-else, while, and for are alowed with C type syntax:
for (i=1; i <= NF; i++) {actions}
while (i<=NF) { actions}
if (I<NF) {actions}

Common Options

-f program_file read the commands from program_file
-Fc use character ¢ asthe field separator character
Examples

% cat filex | tr &z A-Z | awk -F: ‘{printf ("7TR %-6s%-9s %-24s\n",$1,$2,$3)} >upload.file

catsfilex, which is formatted as follows;

nfb791:99999999:smith
7ax791:999999999:jones
8ab792:99999999:chen
8aa791:999999999: mcnulty

changes all lower case characters to upper case with the tr utility, and formats the file into the
following which is written into the file upload.file:

7R NFB791 99999999 SMITH

7R 7AX791 999999999 JONES

7R 8AB792 99999999 CHEN

7R 8AAT791 999999999 MCNULTY

Introduction to Unix © 1998 University Technology Services, The Ohio State University 69

Other Useful Commands

CHAPTER 8

Other Useful Commands

8.1 Working With Files

This section will describe a number of commands that you might find useful in examining and
manipul ating the contents of your files.

TABLE 8.1 File utilities

Command/Syntax

What it will do

cmp [optiong] filel file2

compare two files and list where differences occur (text or binary files)

cut [optiong] [file(s)]

cut specified field(s)/character(s) from linesin file(s)

diff [optiong] filel file2

compare the two files and display the differences (text files only)

file [optiong] file

classify the filetype

find directory [options] [actions]

find files matching atype or pattern

In [options] source filetarget

link the source fileto the target

paste [optiong] file

paste field(s) onto the linesin file

sort [optiong] file

sort the lines of the file according to the options chosen

strings [optiong] file

report any sequence of 4 or more printable characters ending in <NL> or
<NULL>. Usually used to search binary filesfor ASCII strings.

tee [optiong] file

copy stdout to one or more files

touch [options] [date] file

create an empty file, or update the access time of an existing file

tr [optiong] stringl string2

tranglate the charactersin stringl from stdin into those in string2 in stdout

uniq [optiong] file

remove repeated linesin afile

wc [options] [file(s)]

display word (or character or line) count for file(s)

70 © 1998 University Technology Services, The Ohio State University Introduction to Unix

Working With Files

8.1.1 cmp - compare file contents

The cmp command compares two files, and (without options) reports the location of the first
difference between them. It can deal with both binary and ASCII file comparisons. It does a
byte-by-byte comparison.

Syntax
cmp [options] filel file2 [skipl] [skip2]

The skip numbers are the number of bytes to skip in each file before starting the comparison.

Common Options

| report on each difference
-S report exit status only, not byte differences

Examples

Given the files mon.logins.and tues.logins:

ageorge ageorge
bsmith cbetts
Cbetts jchen
jchen jdoe
jmarsch jmarsch
Ikeres Ikeres
mschmidt proy
sphillip sphillip
wyepp wyepp

The comparison of the two filesyields:

% cmp mon.logins tues.logins
mon.loginstues.logins differ: char 9, line 2

The default it to report only the first difference found.

This command is useful in determining which version of afile should be kept when thereis more than
one version.

Introduction to Unix © 1998 University Technology Services, The Ohio State University 71

Other Useful Commands

8.1.2 diff - differences in files

The diff command compares two files, directories, etc, and reports all differences between the two. [t
deas only with ASCII files. It's output format is designed to report the changes necessary to convert
thefirst file into the second.

Syntax
diff [optiong] filel file2

Common Options

-b ignore trailing blanks

-i ignore the case of letters

-w ignore <space> and <tab> characters

-e produce an output formatted for use with the editor, ed

-r apply diff recursively through common sub-directories
Examples

For the mon.logins and tues.logins files above, the difference between them is given by:

% diff mon.logins tues.logins
2d1
< bsmith
424
> jdoe
c/
< mschmidt

> proy

Note that the output lists the differences as well as in which file the difference exists. Linesin the
first file are preceded by "< ™", and those in the second file are preceded by "> ".

72 © 1998 University Technology Services, The Ohio State University Introduction to Unix

Working With Files

8.1.3 cut - select parts of aline
The cut command allows a portion of afile to be extracted for another use.

Syntax

cut [optiong] file

Common Options

-C character_list character positionsto select (first character is 1)
-d delimiter field delimiter (defaultsto <TAB>)
-f field_list fieldsto select (first field is 1)

Both the character and field lists may contain comma-separated or blank-character-separated
numbers (in increasing order), and may contain a hyphen (-) to indicate a range. Any numbers
missing at either before (e.g. -5) or after (e.g. 5-) the hyphen indicates the full range starting with the
first, or ending with the last character or field, respectively. Blank-character-separated lists must be
enclosed in quotes. The field delimiter should be enclosed in quotes if it has special meaning to the
shell, e.g. when specifying a <space> or <T AB> character.

Examples

In these examples we will use thefile users:

jdoe John Doe 4/15/96
Ismith Laura Smith 3/12/96
pchen Paul Chen 1/5/96
jhsu Jake Hsu 4/17/96
sphilip Sue Phillip 4/2/96

If you only wanted the username and the user's real name, the cut command could be used to get only
that information:
% cut -f 1,2 users

jdoe John Doe

Ismith Laura Smith

pchen Paul Chen

jhsu Jake Hsu

sphilip Sue Phillip

Introduction to Unix © 1998 University Technology Services, The Ohio State University 73

Other Useful Commands

The cut command can also be used with other options. The -c option alows characters to be the
selected cut. To select the first 4 characters:

% cut -c 1-4 users

Thisyields:
jdoe
[smi
pche
jhsu
sphi

thus cutting out only the first 4 characters of each line.

8.1.4 paste - merge files
The paste command allows two files to be combined side-by-side. The default delimiter between the

columnsin a paste is atab, but options alow other delimiters to be used.
Syntax
paste [optiong] filel file2

Common Options

-d list list of delimiting characters
-S concatenate lines

The list of delimiters may include a single character such as a comma; a quoted string, such as a
space; or any of the following escape sequences.

\n <newline> character

\t <tab> character

\\ backslash character

\0 empty string (non-null character)

It may be necessary to quote delimiters with special meaning to the shell.

A hyphen (-) in place of afile nameis used to indicate that field should come from standard input.

74 © 1998 University Technology Services, The Ohio State University Introduction to Unix

Working With Files

Examples

Given thefileusers:

jdoe John Doe 4/15/96
[smith Laura Smith 3/12/96
pchen Paul Chen 1/5/96
jhsu Jake Hsu 4/17/96
sphilip Sue Phillip 4/2/96

and the file phone:

John Doe 555-6634
Laura Smith 555-3382
Paul Chen 555-0987
Jake Hsu 555-1235
Sue Phillip 555-7623

the paste command can be used in conjunction with the cut command to create anew file, listing, that
includes the username, real name, last login, and phone number of all the users. First, extract the
phone numbers into atemporary file, temp.file:
% cut -f2 phone > temp.file

555-6634

555-3382

555-0987

555-1235

555-7623

The result can then be pasted to the end of each line in users and directed to the new file, listing:

% paste users temp.file > listing

jdoe John Doe 4/15/96 237-6634
[smith Laura Smith 3/12/96 878-3382
pchen Paul Chen 1/5/96 888-0987
jhsu Jake Hsu 4/17/96 545-1235
sphilip Sue Phillip 4/2/96 656-7623

This could also have been done on one line without the temporary file as:
% cut -f2 phone | paste users - > listing

with the sameresults. Inthis case the hyphen (-) is acting as a placeholder for an input field (namely,
the output of the cut command).

Introduction to Unix © 1998 University Technology Services, The Ohio State University 75

Other Useful Commands

8.1.5 touch - create afile

The touch command can be used to create a new (empty) file or to update the last access date/time on
an existing file. The command is used primarily when a script requires the pre-existence of afile (for
example, to which to append information) or when the script is checking for last date or time a

function was performed.

Syntax

touch [options] [date time] file
touch [optiong] [-t timg] file

Common Options

-t time

change the access time of the file (SVR4 only)

don’t create thefileif it doesn’t already exist

force the touch, regardless of read/write permissions
change the modification time of the file (SVR4 only)
use the time specified, not the current time (SVR4 only)

When setting the "-t time" option it should be in the form:

[[CC]YY]MMDDhhmm[.SS]
where:
cC first two digits of the year
YY second two digits of the year
MM month, 01-12
DD day of month, 01-31
hh hour of day, 00-23
mm minute, 00-59
SS second, 00-61

The date_time options has the form:

MMDDhhmm[Y Y]

where these have the same meanings as above.

The date cannot be set to be before 1969 or after January 18, 2038.

Examples

To create afile:

% touch filename

76 © 1998 University Technology Services, The Ohio State University Introduction to Unix

Working With Files

8.1.6 wc - count words in afile

wc stands for "word count"; the command can be used to count the number of lines, characters, or
wordsin afile.

Syntax

wc [optiong] file

Common Options

-C count bytes

-m count characters (SVR4)
| count lines

-W count words

If no options are specified it defaultsto "-lwc".
Examples

Giventhefileusers:

jdoe John Doe 4/15/96
[smith Laura Smith 3/12/96
pchen Paul Chen 1/5/96
jhsu Jake Hsu 4/17/96
sphilip Sue Phillip 4/2/96

the result of using awc command is as follows:

% WC USers
5 20 121 users

The first number indicates the number of linesin the file, the second number indicates the number of
words in the file, and the third number indicates the number of characters.

Using the wc command with one of the options (-I, lines; -w, words; or -c, characters) would result in
only one of the above. For example, "wc -l users’ yields the following result:

S users

Introduction to Unix © 1998 University Technology Services, The Ohio State University 77

Other Useful Commands

8.1.7 In -link to another file

The In command creates a "link" or an additional way to access (or gives an additional name to)
another file.

Syntax

In [options] source [target]
If not specified tar get defaultsto afile of the same name in the present working directory.

Common Options

-f force alink regardless of target permissions; don’t report errors (SVR4 only)
-S make a symbolic link
Examples

A symbolic link is used to create a new path to another file or directory. If a group of users, for
example, is accustomed to using a command called chkmag, but the command has been rewritten and
is now called chkit, creating a symbolic link so the users will automatically execute chkit when they
enter the command chkmag will ease transition to the new command.

A symbolic link would be done in the following way:

% In -s chkit chkmag

Thelong listing for these two filesis now as follows:

16 -rwxr-x--- 1 lindadb acs 15927 Apr 23 04:10 chkit
1 lrwxrwxrwx 1 lindadb acs 5 Apr 23 04:11 chkmag -> chkit

Note that while the permissionsfor chkmag are open to all, sinceit islinked to chkit, the permissions,
group and owner characteristics for chkit will be enforced when chkmag is run.

With asymbolic link, the link can exist without the file or directory it islinked to existing first.

A hard link can only be done to another file on the same file system, but not to a directory (except by
the superuser). A hard link creates a new directory entry pointing to the same inode as the original
file. Thefilelinked to must exist before the hard link can be created. Thefilewill not be deleted until
al the hard linksto it are removed. To link the two files above with a hard link to each other do:

% In chkit chkmag

Then along listing shows that the inode number (742) is the same for each:

% Is-il chkit chkmag
742 -rwxr-x--- 2 lindadb acs 15927 Apr 23 04:10 chkit
742 -rwxr-x--- 2 lindadb acs 15927 Apr 23 04:10 chkmag

78 © 1998 University Technology Services, The Ohio State University Introduction to Unix

Working With Files

8.1.8 sort - sort file contents

The sort command is used to order the lines of afile. Various options can be used to choose the order
aswell asthefield on which afileissorted. Without any options, the sort compares entire linesin the
file and outputs them in ASCII order (numbersfirst, upper case letters, then lower case |etters).

Syntax
sort [options] [+posl [-pos2]] file

Common Options

-b ignore leading blanks (<space> & <tab>) when determining starting and
ending characters for the sort key

-d dictionary order, only letters, digits, <space> and <tab> are significant

-f fold upper caseto lower case

-k keydef sort on the defined keys (not available on all systems)

-i ignore non-printable characters

-n numeric sort

-o outfile output file

-r reverse the sort

-t char use char asthe field separator character

-u unique; omit multiple copies of the same line (after the sort)

+posl [-pos2] (old style) provides functionality similar to the "-k keydef" option.

For the +/-position entries posl is the starting word number, beginning with 0 and pos2 is the ending
word number. When -pos2 is omitted the sort field continues through the end of the line. Both posl
and pos2 can be written in the form w.c, where w is the word number and c is the character within the
word. For ¢ 0 specifies the delimiter preceding the first character, and 1 is the first character of the
word. These entries can be followed by type modifiers, e.g. n for numeric, b to skip blanks, etc.

The keydef field of the "-k" option has the syntax:
start_field [type] [,end_field [type]]

where:

start_field, end_field define the keysto restrict the sort to a portion of theline

type modifies the sort, valid modifiers are given the single characters (bdfiMnr)
from the similar sort options, e.g. atype b isequivaent to "-b", but applies
only to the specified field

Introduction to Unix © 1998 University Technology Services, The Ohio State University 79

Other Useful Commands

Examples

Inthefileusers:

jdoe John Doe 4/15/96
[smith Laura Smith 3/12/96
pchen Paul Chen 1/5/96
jhsu Jake Hsu 4/17/96
sphilip Sue Phillip 4/2/96

sort users yields the following:

jdoe John Doe 4/15/96
jhsu Jake Hsu 4/17/96
[smith Laura Smith 3/12/96
pchen Paul Chen 1/5/96
sphilip Sue Phillip 4/2/96

If, however, alisting sorted by last name is desired, use the option to specify which field to sort on
(fields are numbered starting at 0):

% sort +2 users:

pchen Paul Chen 1/5/96
jdoe John Doe 4/15/96
jhsu Jake Hsu 4/17/96
sphilip Sue Phillip 4/2/96
Ismith Laura Smith 3/12/96

To sort in reverse order:

% sort -r users.

sphilip Sue Phillip 4/2/96
pchen Paul Chen 1/5/96
[smith Laura Smith 3/12/96
jhsu Jake Hsu 4/17/96
jdoe John Doe 4/15/96

80 © 1998 University Technology Services, The Ohio State University Introduction to Unix

Working With Files

A particularly useful sort option isthe -u option, which eliminates any duplicate entriesin afile while
ordering the file. For example, the file todays.logins:

sphillip
jchen
jdoe
Ikeres
jmarsch
ageorge
Ikeres
proy
jchen

shows a listing of each username that logged into the system today. If we want to know how many
unique users logged into the system today, using sort with the -u option will list each user only once.
(The command can then be piped into "wc -I" to get a number):

% sort -u todays.logins
ageorge
jchen
jdoe
jmarsch
Ikeres
proy
sphillip

Introduction to Unix © 1998 University Technology Services, The Ohio State University 81

Other Useful Commands

8.1.9 tee - copy command output
tee sends standard in to specified files and also to standard out. It’s often used in command pipelines.

Syntax
tee [options] [file[g]]

Common Options
-a
i

Examples

In this first example the output of who is displayed on the screen and stored in the file usersfile:

append the output to the files
ignore interrupts

brigadier: condron [55]> who | tee users.file
condron ttyp0 Apr 22 14:10 (lcondron-pc.acs.)
frank ttypl Apr 22 16:19 (nyssa)
condron ttyp9 Apr 22 15:52 (lcondron-mac.acs)
brigadier: condron [56]> cat users.file
condron ttyp0 Apr 22 14:10 (lcondron-pc.acs.)
frank ttypl Apr 22 16:19 (nyssa)
condron ttyp9 Apr 22 15:52 (lcondron-mac.acs)

In this next example the output of who is sent to the files users.a and users.b. It isaso piped to the

wc command, which reports the line count.

brigadier: condron [57]> who | tee users.a users.b | wc -1

3

brigadier: condron [58]> cat users.a
condron ttypo0 Apr 22 14:10 (lcondron-pc.acs.)
frank ttypl Apr 22 16:19 (nyssa)
condron ttyp9 Apr 22 15:52 (lcondron-mac.acs)
brigadier: condron [59]> cat users.b
condron ttyp0 Apr 22 14:10 (lcondron-pc.acs.)
frank ttypl Apr 22 16:19 (nyssa)
condron ttyp9 Apr 22 15:52 (lcondron-mac.acs)

82

© 1998 University Technology Services, The Ohio State University

Introduction to Unix

Working With Files

In the following example a long directory listing is sent to the file files.long. It is aso piped to the
grep command which reports which files were last modified in August.

brigadier: condron [60]> 1ls -1 | tee files.long |grep Aug

1 drwxr-sr-x 2 condron 512 Aug 8 1995 News/
2 -rw-r--r-- 1 condron 1076 Aug 8 1995 magnus.cshrc
2 -rw-r--r-- 1 condron 1252 Aug 8 1995 magnus.login

brigadier: condron [63]> cat files.long

total 34
2 -rw-r--r-- 1 condron 1253 Oct 10 1995 #.login#
1 drwx------ 2 condron 512 Oct 17 1995 Mail/
1 drwxr-sr-x 2 condron 512 Aug 8 1995 News/
5 -rw-r--r-- 1 condron 4299 Apr 21 00:18 editors.txt
2 -rw-r--r-- 1 condron 1076 Aug 8 1995 magnus.cshrc
2 -rw-r--r-- 1 condron 1252 Aug 8 1995 magnus.login
7 -rw-r--r-- 1 condron 6436 Apr 21 23:50 resources.txt
4 -rw-r--r-- 1 condron 3094 Apr 18 18:24 telnet.ftp
1 drwxr-sr-x 2 condron 512 Apr 21 23:56 uc/
1 -rw-r--r-- 1 condron 1002 Apr 22 00:14 unig.tee.txt
1l -rw-r--r-- 1 condron 1001 Apr 20 15:05 uniqg.tee.txt~
7 -rw-r--r-- 1 condron 6194 Apr 15 20:18 unixgrep.txt

Introduction to Unix © 1998 University Technology Services, The Ohio State University 83

Other Useful Commands

8.1.10 uniqg - remove duplicate lines
uniq filters duplicate adjacent lines from afile.

Syntax

uniq [options] [+|-n] file [file.new]

Common Options

-d one copy of only the repeated lines
-u select only the lines not repeated
+n ignore the first n characters
-sn same as above (SVR4 only)
-n skip thefirst n fields, including any blanks (<space> & <tab>)
-f fields same as above (SVR4 only)
Examples

Consider the following file and example, in which uniq removes the 4th line from file and places the
result in afile caled file.new.
{unix prompt 1} cat file
1236
4536
7890
7890
{unix prompt 2} uniq file file.new
{unix prompt 3} cat file.new
1236
4536
7890

Below, the -n option of the uniq command is used to skip the first 2 fieldsin file, and filter out lines
which are duplicates from the 3rd field onward.
{unix prompt 4} uniq -2 file
1236
7890

84 © 1998 University Technology Services, The Ohio State University Introduction to Unix

Working With Files

8.1.11 strings - find ASCII strings

To search a binary file for printable, ASCII, strings use the strings command. It searches for any
sequence of 4 or more ASCII characters terminated by a <newline> or null character. | find this
command useful for searching for file names and possible error messages within compiled programs
that | don’'t have source code for.

Syntax

strings [optiong] file
Common Options

-n number

-number

-t format

-0

Examples

% strings /bin/cut

use number as the minimum string length, rather than 4 (SVR4 only)
same as above

precede the string with the byte offset from the start of the file, where format
isone of: d = decimal, o = octal, x = hexadecimal (SVR4 only)

precede the string with the byte offset in decimal (BSD only)

SUNW_OST_OSCMD
no delimiter specified

invalid delimiter
b:c:d:f:ns

cut: -n may only be used with -b
cut: -d may only be used with -f
cut: -s may only be used with -f

no list specified

cut: cannot open %s

invalid range specifier

too many ranges specified

ranges must be increasing

invalid character in range

Internal error processing input
invalid multibyte character

unable to allocate enough memory
unable to allocate enough memory

cut:

usage: cut -b list [-n] [filename ...]
cut -clist [filename ...]
cut -f list [-d delim] [-g] [filename]

Introduction to Unix © 1998 University Technology Services, The Ohio State University 85

Other Useful Commands

8.1.12 file - file type

This program, file, examines the selected file and tries to determine what type of fileit is. It doesthis
by reading the first few bytes of the file and comparing them with the table in /etc/magic. It can
determine ASCII text files, tar formatted files, compressed files, etc.

Syntax
file [options] [-m magic_file] [-f file_list] file

Common Options

-C check the magic file for errorsin format

-f file_list file_list contains alist of filesto examine

-h don't follow symboalic links (SVR4 only)

-L follow symbolic links (BSD only)

-m magic_file use magic_file as the magic file instead of /etc/magic
Examples

Below we list the output from the command "file filename" for some representative files.

/etc/magic: ascii text

Jusr/local/bin/gzip: Sun demand paged SPARC executable dynamically linked

/usr/bin/cut: ELF 32-bit MSB executable SPARC Version 1, dynamically linked, stripped
source.tar: USTAR tar archive

source.tar.Z: compressed data block compressed 16 bits

8.1.13 tr - translate characters
The tr command translates characters from stdin to stdout.

Syntax

tr [options] stringl [string2]

With no options the characters in stringl are trandated into the characters in string2, character by
character in the string arrays. The first character in stringl is translated into the first character in
string2, etc.

A range of charactersin astring is specified with a hyphen between the upper and lower characters of
the range, e.g. to specify all lower case aphabetic charactersuse '[a-z].

Repeated characters in string2 can be represented with the *[x*n]’ notation, where character X is
repeated n times. If nisO or absent it is assumed to be as large as needed to match stringl.

86 © 1998 University Technology Services, The Ohio State University Introduction to Unix

Working With Files

Characters can include \octal

is replaced by the one, two,

"character" can be one of:
b

f
n
r
t
v

(BSD and SVR4) and \character (SVR4 only) notation. Here "octal"
or three octal integer sequence encoding the ASCII character and

back space
form feed

new line
carriage return
tab

vertical tab

The SVR4 version of tr allows the operand ":class:" in the string field where class can take on
character classification values, including:

alpha
lower

upper

Common Options

Examples

alphabetic characters
lower case alphabetic characters
upper case a phabetic characters

complement the character set in stringl
delete the charactersin stringl
sgueeze a string of repeated charactersin stringl to a single character

The following examples will use asinput thefile, alist of P. G. Wodehouse Jeeves & Wooster books.

The Inimitable Jeeves [1923] The Mating Season [1949]

Carry On, Jeeves [1925] Ring for Jeeves [1953]

Very Good, Jeeves [1930] Jeeves and the Feudal Spirit [1954]
Thank Y ou, Jeeves[1934] Jeeves in the Offing [1960]

Right Ho, Jeeves [1934] Stiff Upper Lip, Jeeves [1963]
The Code of the Woosters [1938] Much Obliged, Jeeves[1971]

Joy in the Morning [1946] Aunts Aren't Gentlemen [1974]

To trandate all lower case alphabetic characters to upper case we could use either of:

tr'[az) [A-Z)

or tr '[:lower:]” '[:upper:]’

Introduction to Unix © 1998 University Technology Services, The Ohio State University 87

Other Useful Commands

% cat wodehouse | tr '[a-Z] '[A-Z]
THE INIMITABLE JEEVES [1923]
CARRY ON, JEEVES [1925]
VERY GOOD, JEEVES [1930]
THANK YOU, JEEVES [1934]
RIGHT HO, JEEVES [1934]
THE CODE OF THE WOOSTERS [1938]
JOY IN THE MORNING [1946]

We could delete all numbers with:

% cat wodehouse | tr -d '[0-9]’
The Inimitable Jeeves|]
Carry On, Jeeves|]

Very Good, Jeeves|]

Thank Y ou, Jeeves|]

Right Ho, Jeeves|]

The Code of the Woosters|]
Joy inthe Morning []

% cat wodehouse | tr -s’ erf’
The Inimitable Jeves [1923]
Cary On, Jeves [1925]
Very Good, Jeves [1930]
Thank Y ou, Jeves[1934]
Right Ho, Jeves [1934]
The Code of the Woosters [1938]
Joy in the Morning [1946]

Since tr reads from stdin we first cat the file and pipe the output to tr, asin:

THE MATING SEASON [1949]

RING FOR JEEVES[1953]

JEEVES AND THE FEUDAL SPIRIT [1954]
JEEVESIN THE OFFING [1960]

STIFF UPPER LIP, JEEVES [1963]

MUCH OBLIGED, JEEVES [1971]
AUNTSAREN'T GENTLEMEN [1974]

The Mating Season []

Ring for Jeeves|]

Jeeves and the Feudal Spirit []
Jeevesin the Offing []

Stiff Upper Lip, Jeeves|]
Much Obliged, Jeeves|]
Aunts Aren't Gentlemen []

To squeeze all multiple occurrences of the characterse, r, and f:

The Mating Season [1949]

Ring for Jeves [1953]

Jeves and the Feudal Spirit [1954]
Jevesin the Ofing [1960]

Stif Upper Lip, Jeves[1963]
Much Obliged, Jeves [1971]
Aunts Aren't Gentlemen [1974]

© 1998 University Technology Services, The Ohio State University

Introduction to Unix

Working With Files

8.1.14 find - find files

The find command will recursively search the indicated directory tree to find files matching a type or
pattern you specify. find can then list the files or execute arbitrary commands based on the results.

Syntax

find directory [search optiong] [actions]

Common Options

For the time search options the notation in days, n is:

+n
n
-Nn

more than n days
exactly n days
less than n days

Some file characteristics that find can search for are:

time that the file was last accessed or changed

-atimen

-ctimen

-mtimen
-newer filename
-typetype

b

- o O

p
f

-fstype type

-user username
-group groupname
-perm [-]mode
-exec command

-name filename

-Is
-print

access time, true if accessed n days ago

change time, true if the files status was changed n days ago
modified time, trueif the files data was modified n days ago
true if newer than filename

type of file, where type can be:

block specid file

character specia file

directory

symbolic link

named pipe (fifo)

regular file

type of file system, where type can be any valid file system type, e.g.: ufs
(Unix File System) and nfs (Network File System)

true if the file belongs to the user username
true if the file belongs to the group groupname

permissions on the file, where mode is the octal modes for the chmod
command. When modeis precede by the minus sign only the bits that are set
are compared.

execute command. The end of command isindicated by and escaped
semicolon (\;). The command argument, {}, replaces the current path name.

trueif the file is named filename. Wildcard pattern matches are allowed if
the meta-character is escaped from the shell with abackslash (\).

alwaystrue. It printsalong listing of the current pathname.
print the pathnames found (default for SVR4, not for BSD)

Introduction to Unix

© 1998 University Technology Services, The Ohio State University 89

Other Useful Commands

Complex expressions are allowed. Expressions should be grouped within parenthesis (escaping the
parenthesis with a backslash to prevent the shell from interpreting them). The exclamation symbol (1)
can be used to negate an expression. The operators. -a (and) and -0 (or) are used to group
expressions.

Examples

find will recursively search through sub-directories, but for the purpose of these examples we will
just use the following files:

14 -rw-r--r-- 1 frank staff 6682 Feb 5 10:04 library
6 -r--r----- 1 frank staff 3034 Mar 16 1995 netfile
34 -rw-r--r-- 1 frank staff 17351 Feb 5 10:04 standard

2 -YWXr-Xr-X 1 frank staff 386 Apr 26 09:51 tr25*

To find al files newer than thefile, library:

% find . -newer library -print
./tr25

. /standard

To find al files with general read or execute permission set, and then to change the permissions on
those filesto disallow this:

% find . \(-perm -004 -0 -perm -001\) -exec chmod o-rx {} \; -execls-d {} \;

-rW-r----- 1 frank staff 6682 Feb 5 10:04 ./library
-TWXY-X--- 1 frank staff 386 Apr 26 09:51 ./tr25
-TW-Y----- 1 frank staff 17351 Feb 5 10:04 ./standard

In this exampl e the parentheses and semicolons are escaped with a backslash to prevent the shell from
interpreting them. The curly brackets are automatically replaced by the results from the previous
search and the semicolon ends the command.

We could search for any file name containing the string "ar" with:

% find . -name *ar* -Is
326584 7 -rwW-r----- 1 frank staff 6682 Feb 5 10:04 ./library

326585 17 -rw-r----- 1 frank staff 17351 Feb 5 10:04 ./standard

where the -Is option prints out along listing, including the inode numbers.

20 © 1998 University Technology Services, The Ohio State University Introduction to Unix

File Archiving, Compression and Conversion

8.2 File Archiving, Compression and

Conversion
TABLE 8.2 File Archiving, Compression and Conversion Commands
Command/Syntax What it will do

compress’uncompress/zcat [optiong] filg[.Z] compress or uncompressafile. Compressed files are stored witha.Z
ending.

dd [if=infile] [of=outfile] [operand=value] copy afile, converting between ASCII and EBCDIC or swapping
byte order, as specified

gzip/gunzip/zcat [options] file][.gZ] compress or uncompress afile. Compressed files are stored with a
.gz ending

od [optiong] file octal dump abinary file, in octal, ASCII, hex, decimal, or character
mode.

tar key[options] [file(s)] tape archiver--refer to man pages for details on creating, listing, and
retrieving from archivefiles. Tar files can be stored on tape or disk.

uudecode [fil€g] decode a uuencoded file, recreating the original file

uuencode [file] new_name encode binary fileto 7-bit ASCII, useful when sending viaemail, to

be decoded as new_name at destination

8.2.1 File Compression

The compress command is used to reduce the amount of disk space utilized by afile. When afile has
been compressed using the compress command, a suffix of .Z is appended to the file name. The
ownership modes and access and modification times of the original file are preserved. uncompress
restores the files originally compressed by compress.

Syntax

compress [options] [fil€]
uncompress [optiong] [file.Z]
zcat [file.Z]

Common Options

-C write to standard output and don’t create or change any files

-f force compression of afile, evenif it doesn’t reduce the size of thefile or if
thetarget file (file.Z) already exists.

-v verbose. Report on the percentage reduction for thefile.

zcat writes to standard output. It isequivalent to "uncompress-c".

Introduction to Unix © 1998 University Technology Services, The Ohio State University 91

Other Useful Commands

Examples

Given thefiles:

BoR R R

96 -rw-r--r--
184 -rw-r--r--
152 -rw-r--r--
168 -rw-r--r--
These can be compressed with:

% compress logins.*

which creates thefiles:

24
40
24
32

-IW-Y--r--
-Yw-r--r--
-YwW-Y--r--
-rw-Yr--r--

The origina filesarelost.

R B B BB

lindadb
lindadb
lindadb
lindadb

lindadb
lindadb
lindadb
lindadb

acs

acs

acs

acs

acs

acs

acs

acs

45452 Apr
90957 Apr
75218 Apr
85970 Apr

24
24
24
24

09:
09:
09:
09:

13
13
13
13

logins.beauty
logins.bottom
logins.photon

logins.top

8486 Apr 24 09:13 logins.beauty.Z
16407 Apr 24 09:13 logins.bottom.Z
10909 Apr 24 09:13 logins.photon.Z
16049 Apr 24 09:13 logins.top.Z

To display acompressed file, the zcat command is used:

% zcat logins.beauty.Z | head
beauty:01/22/94:#total 10gins,4338:#different UIDs,2290
beauty:01/23/94:#total 1ogins,1864.#different UIDs,1074
beauty:01/24/94:#total 1ogins,2317:#different UIDs,1242
beauty:01/25/94:#total 1ogins,3673:#different UIDs,2215
beauty:01/26/94:#total 1ogins,3532:#different UIDs,2216
beauty:01/27/94:#total 10gins,3096:#different UIDs,1984
beauty:01/28/94:#total l1ogins,3724.#different UIDs,2212
beauty:01/29/94:#total 1ogins,3460:#different UIDs,2161
beauty:01/30/94:#total 1ogins,1408:#different UIDs,922

beauty:01/31/94:#total logins,2175:#different UIDs,1194

A display of the file using commands other than zcat yields an unreadable, binary, output.

The uncompress command is used to return the file to its original format:

% uncompress logins.*.Z ; Is-alslogins.*

96
184
152
168

-rw-Yr--r--
-IrW-Y--Y--
-rw-Yr--r--
-IrW-Y--Y--

1 lindadb acs
1 lindadb acs
1 lindadb acs
1 lindadb acs

45452 Apr
90957 Apr
75218 Apr
85970 Apr

24
24
24
24

09:
09:

09

09:

13
13
:13
13

logins.beauty
logins.bottom
logins.photon

logins.top

92

© 1998 University Technology Services, The Ohio State University

Introduction to Unix

File Archiving, Compression and Conversion

In addition to the standard Unix compress, uncompress, zcat utilities there are a set of GNU ones
freely available. These do an even better job of compression using a more efficient algorithm. The
GNU programs to provide similar functions to those above are often installed as gzip, gunzp, and
zcat, respectively. Files compressed with gzip are given the endings .z or .gz. GNU software can be
obtained via anonymous ftp from ftp://ftp.gnu.or g/pub/gnu.

8.2.2 tar - archive files

The tar command combines files into one device or filename for archiving purposes. The tar
command does not compress the files; it merely makes a large quantity of files more manageable.

Syntax

tar [options] [directory file]

Common Options

create an archive (begin writting at the start of the file)
table of contentslist

extract from an archive

verbose

archive file name

archive block size

o *rT< X *+ 0

tar will accept its options either with or without a preceding hyphen (-). The archivefile can be adisk
file, atape device, or standard input/output. The latter are represented by a hyphen.

Examples

Given the files and size indications below:

45 |ogs.beauty
89 logs.bottom
74 1ogs.photon
84 logs.top

tar can combine these into onefile, logfile.tar:

% tar -cf logfiletar logs.* ; Is-slodfiletar
304 logfile.tar

Many anonymous FTP archive sites on the Internet store their packages in compressed tar format, so
thefileswill endin .tar.Z or .tar.gz. To extract the files from these files you would first uncompress
them, or use the appropriate zcat command and pipe the output into tar, e.g.:

% zcat archivetar.Z | tar -xvf -

where the hyphen at the end of the tar command indicates that the file is taken from stdin.

Introduction to Unix © 1998 University Technology Services, The Ohio State University 93

Other Useful Commands

8.2.3 uuencode/uudecode - encode afile

To encode a binary file into 7-bit ASCII use the uuencode command. To decode the file back to
binary use the uudecode command. The uu in the names comes because they are part of the
Unix-to-Unix CoPy (UUCP) set of commands. The uuencode and uudecode commands are
commonly used when sending binary files through e-mail. In e-mail there’s no guarantee that 8-bit
binary fileswill be transferred cleanly. So to ensure delivery you should encode the binary file, either
directly, on the command line and then include the encoded file, or indirectly, by letting your MIME
mailer program do it for you. In asimilar manner, the user decodes the file on the receiving end.

Syntax

uuencode [source file] pathname_to uudecode to[> new_file]

uudecade [-p] encoded file
Common Options

-p send output to standard output, rather than to the default file

Examples

Thefirst line of encoded file includes the permission modes and name that uudecode will use when
decoding the file. The file begins and ends with the begin and end keywords, respectively, e.qg.:

begin 555 binary_filename

M7?T51@$" 0 (%W #5< T"
MIOH!4% 8 T $- '@ H 4 P
M -0 '$! ! ! %"

M%P!OA< % $ $ 4(8 -"& W& W% <0
M @!0B T(@)@ P O=7-R+VQI8B]L9"YS
M;RXQ <'Y VP "O IVP)8 &6 !GO

M % U0 %G 13 < #Q %Q |
MEP P I_ '@ PP (P
M NO =H 0 $O Y < # 1L
MOl $ $ & | PHOA@ 48
M" I 0E '@ ,T(@%'()@ $
M 0 (@ $ '-"NIOK@ H
M $ # ' | P#J 4@ #8 !
M 1Y 0 ,TH % I=X 0
M@ @ # -IX 13~ "E, $ @
M 4>)0 o ". P

%P)@ $
end

94 © 1998 University Technology Services, The Ohio State University Introduction to Unix

File Archiving, Compression and Conversion

8.2.4 dd - block copy and convert

The dd command allows you to copy from raw devices, such as disks and tapes, specifying the input
and output block sizes. dd was originally known as the disk-to-disk copy program. With dd you can
also convert between different formats, for example, EBCDIC to ASCII, or swap byte order, etc.

Syntax

dd [if=input_device] [of=output_device] [operand=valug]

Common Options

if=input_device theinput file or device
of=output_device the output file or device

If the input or output devices are not specified they default to standard input and standard output,
respectively.

Operands can include:

ibs=n input block size (defaults to 512 byte blocks)
obs=n output block size (defaultsto 512 byte blocks)
bs=n sets both input and output block sizes
files=n copy n input files
skip=n skip n input blocks before starting to copy
count=n only copy n input blocks
conv=value],valug] where value can include:
ascii convert EBCDIC to ASCII
ebcdic convert from ASCII to EBCDIC
Icase convert upper case charactersto lower case
ucase convert lower case characters to upper case
swab swap every pair of bytes of input data
noerror don't stop processing on an input error
sync pad every input block to the size of ibs, appending null bytes as needed

Block sizes are specified in bytes and may end in k, b, or w to indicate 1024 (kilo), 512 (block), or 2
(word), respectively.

Introduction to Unix © 1998 University Technology Services, The Ohio State University 95

Other Useful Commands

Examples

To copy files from one tape drive to another:

% dd if=/dev/rmt/0 of=/dev/rmt/1
20+0 recordsin
20+0 records out

To copy files written on atape drive on a big endian machine, written with a block size of 20 blocks,
to afile on alittle endian machine that now has the tape inserted in its drive, we would need to swap
pairs of bytes, asin:

% dd if=/dev/rmt/0 of=new _file ibs=20b conv=swab
1072+0 recordsin
21440+0 records out

Upon completion dd reports the number of whole blocks and partial blocks for both the input and
output files.

8.2.5 od - octal dump of afile

od dumps a file to stdout in different formats, including octal, decimal, floating point, hex, and
character format.

Syntax

od [optiong] file

Common Options

-b octal dump

-d|-D decimal (-d) or long decimal (-D) dump

-g-S signed decimal (-s) and signed long decimal (-S) dump

-f|-F floating point (-f) or long (double) floating point (-F) dump

-x|-X hex (-x) or long hex (-X) dump

-c|-C character (single byte) or long character dump (single or multi-byte
characters, as determined by locale settings) dump

-V verbose mode

96 © 1998 University Technology Services, The Ohio State University Introduction to Unix

File Archiving, Compression and Conversion

Examples

To look at the actual contents of the following file, a list of P. G. Wodehouse's Lord Emsworth

novels.

Something Fresh [1915]

Leaveit to Psmith [1923]

Summer Lightning [1929]

Heavy Weather [1933]

Blandings Castle and Elsewhere [1935]
Uncle Fred in the Springtime [1939]
Full Moon [1947]

we could do:

% od -c wodehouse
0000000 S o met hin

0000020 [1 91 5] Uncle

0000040 a mi te [19
0000060 v e 1t to
0000100 [1 9 2 3]\t P

Uncle Dynamite [1948]

Pigs Have Wings [1952]
Cocktail Time[1958]

Service with a Smile [1961]
Galahad at Blandings [1965]
A Pelican at Blandings [1969]
Sunset at Blandings [1977]

g Fresh

Dyn
4 8]\nlL ea
Psmith

H ave

i g s
0000120 Wings [1952]\WnSu

0000140 m m er L i g
0000160 1 9 2 9]\t C o
0000200 i m e
0000220 W e at her
0000240 S er vi ce

0000260 m i | e

0000300 d i n g s
0000320

0000360 n di ngs [1
0000400 c I e Fr ed
0000420 S pr i n i
0000440 1\t A P [
0000460 | a n d i
0000500 F u | |
0000520\t S u n s
0000540 i n g s
0000554

a
[197

EIl sewhere
0000340 | Gal ahad at

htning [
cktail T

[1958]WnHeavy

[19337\

with a S
[1961]WnWBI an
Castle

and
[1935
B I a
96 5]WnUNn
in the

ime [19329
c

n at B

196 9]\

n [1947]
t Bland
7] \n

Introduction to Unix

© 1998 University Technology Services, The Ohio State University

97

Other Useful Commands

8.3 Remote Connections

TABLE 8.3 Remote Connection Commands
Command/Syntax What it will do
finger [options] user[@hostname] report information about users on local and remote machines
ftp [options] host transfer file(s) using file transfer protocol
rcp [options] hostname remotely copy files from this machine to another machine
rlogin [options] hostname login remotely to another machine
rsh [options] hosthame remote shell to run on another machine
telnet [host [port]] communicate with another host using telnet protocol

8.3.1 TELNET and FTP - remote login and file transfer protocols

TELNET and FTP are Application Level Internet protocols. The TELNET and FTP protocol
specifications have been implemented by many different sources, including The National Center for
Supercomputer Applications (NCSA), and many other public domain and shareware sources.

The programs implementing the TELNET protocol are usually called telnet, but not always. Some
notable exceptions are tn3270, WinQVT, and QWS3270, which are also TELNET protocol
implementations. TELNET is used for remote login to other computers on the Internet.

The programs implementing the FTP protocol are usually called ftp, but there are exceptions to that
too. A program called Fetch, distributed by Dartmouth College, WS_FTP, written and distributed by
John Junod, and Ftptool, written by a Mike Sullivan, are FTP protocol implementations with graphic
user interfaces. There’'s an enhanced FTP version, ncftp, that allows additional features, written by
Mike Gleason. Also, FTP protocol implementations are often included in TELNET implementation
programs, such as the ones distributed by NCSA. FTP is used for transferring files between
computers on the Internet.

rlogin is a remote login service that was at one time exclusive to Berkeley 4.3 BSD UNIX.
Essentially, it offers the same functionality as telnet, except that it passes to the remote computer
information about the user's login environment. Machines can be configured to alow connections
from trusted hosts without prompting for the users passwords. A more secure version of this
protocol is the Secure SHell, SSH, software written by Tatu Ylonen and available via
ftp://ftp.net.ohio-state.edu/pub/security/ssh.

From a Unix prompt, these programs are invoked by typing the command (program name) and the
(Internet) name of the remote machine to which to connect. Y ou can also specify various options, as
allowed, for these commands.

98 © 1998 University Technology Services, The Ohio State University Introduction to Unix

Remote Connections

Syntax

telnet [options] [remote_host [port_number]]
tn3270 [options] [remote_host [port_number]]
ftp [optiong] [remote_host |

Common Options

ftp telnet Action

-d set debugging mode on
-d same as above (SVR4 only)

-i turn off interactive prompting

-n don’t attempt auto-login on connection

-v verbose mode on
-l user connect with username, user, on the remote host (SVR4 only)
-8 8-hit data path (SVR4 only)

telnet and tn3270 allow you the option of specifying a port number to connect to on the remote host.
For both commands it defaults to port number 23, the telnet port. Other ports are used for debugging
of network services and for specialized resources.

Examples

telnet oscar.us.ohio-state.edu
tn3270 ohstmvsa.acs.ohio-state.edu
ftp magnus.acs.ohio-state.edu

The remote machine will query you for your login identification and your password. Machines set up
as archives for software or information distribution often allow anonymous ftp connections. You ftp
to the remote machine and login as anonymous (the login ftp is equivaent on many machines), that
is, when asked for your "login" you would type anonymous.

Once you have successfully connected to a remote computer with telnet and rlogin (and assuming
terminal emulation is appropriate) you will be able to use the machine as you aways do.

Once you have successfully connected to a remote computer with ftp, you will be able to transfer a
file "up" to that computer with the put command, or "down" from that computer with the get
command. The syntax isasfollows:

put local-file-name remote-file-name

get local-file-name remote-file-name

Introduction to Unix © 1998 University Technology Services, The Ohio State University 99

Other Useful Commands

Other commands are available in ftp as well, depending on the specific "local" and "remote" FTP
implementations. The help command will display alist of available commands. The help command
will also display the purpose of a specific command. Examples of valid commands are shown below:

help display list of available commands

help mget display the purpose of the mget command ("get multiple files")
pwd present working directory

Isordir directory list

cd change directory

Icd local change directory

open specify the machine you wish to connect with

user specify your login id (in cases where you are not prompted)
quit quit out of the FTP program

8.3.2 finger - get information about users

finger displaysthe .plan file of a specific user, or reports who is logged into a specific machine. The
user must alow general read permission on the .plan file.

Syntax

finger [options] [user[@hostname]]

Common Options

-l force long output format

-m match username only, not first or last names
-S force short output format
Examples

brigadier: condron [77]> finger workshop@nyssa
Thisisasample .plan file for the nyssaid, workshop.
Thisid is being used thisweek by Frank Fiamingo, Linda
DeBula, and Linda Condron, while we teach a pilot version
of the new Unix workshop we developed for UTS.

Hope yer learnin' somethin'.
Frank, Linda, & Linda

brigadier: condron [77]> finger

Login Name TTY Idle When Where
condron Linda S Condron pO Sun 18:13 lcondron-mac.acs
frank Frank G. Fiamingo pl Mon 16:19 nyssa

100 © 1998 University Technology Services, The Ohio State University Introduction to Unix

Remote Connections

8.3.3 Remote commands

A number of Unix machines can be connected together to form alocal area network. When thisisthe
case, it often happens that a user of one machine has valid login access to several of the other
machines in the local network. There are Unix commands available to such users which provide
convenience in carrying out certain common operations. Because these commands focus on
communications with remote hosts in the local network, the command names begin with the letter
"r": rlogin, rsh, and rcp. The remote access capability of these commands is supported (optionally)
by the dotfile, ~/.rhosts, for individual users and by the system-wide file /etc/hosts.equiv. For
security reasons these may be restricted on some hosts.

The rlogin command allows remote login access to another host in the local network. rlogin passes
information about the local environment, including the value of the TERM environment variable, to
the remote host.

The rsh command provides the ability to invoke a Unix shell on aremote host in the local network for
the purpose of executing a shell command there. This capability is similar to the "shell escape”
function commonly available from within such Unix software systems as editors and email.

The rcp command provides the ability to copy files from the local host to a remote host in the local
network.

Syntax

rlogin [-I username] remote_host
rsh [-l username] remote_host [command]
rep [[userl]@hostl:]origina_filename [[user2] @host2:]new_filename

where the parts in brackets ([]) are optional. rcp does not prompt for passwords, so you must have
permission to execute remote commands on the specified machines as the selected user on each
machine.

Common Options

-| username connect as the user, user name, on the remote host (rlogin & rsh)

The .rhostsfile, if it existsin the user's home directory on the remote host, permitsrlogin, rsh, or rcp
access to that remote host without prompting for a password for that account. The .rhosts file
contains an entry for each remote host and username from which the owner of the .rhosts file may
wish to connect. Each entry in the .rhostsfileis of the form:

remote_host remote user

where listing the remote_user is optional. For instance, if Heather Jones wants to be able to connect
to machinel (where her username is heather) from machine2 (where her username is jones), or from
machine 3 (where her username is heather, the same as for machinel), she could create a .rhostsfile
in her home directory on machinel. The contents of thisfile could be:

Introduction to Unix © 1998 University Technology Services, The Ohio State University 101

Other Useful Commands

machine2 jones

machine3
__or__

machine2 jones

machine3 heather
On a system-wide basis the file /etc/hosts.equiv serves the same purpose for all users, except the
super-user. Such afile with the contents:

remote_machine
allows any user from remote_machine to remote connect to this machine without a password, as the
same username on this machine.
An /etc/hosts.equiv file with the contents:

remote_machine remote user

allows remote_user, on remote_machine, to remote connect to this machine as any local user, except
the super-user.

/etc/hosts.equiv and ~/.rhosts files should be used with caution.

The Secure SHell (SSH) versions of the rcp, rsh, and rlogin programs are freely available and
provide much greater security.

102 © 1998 University Technology Services, The Ohio State University Introduction to Unix

Shell Scripts

CHAPTER 9 Shell Programming

9.1 Shell Scripts

Y ou can write shell programs by creating scripts containing a series of shell commands. Thefirst line
of the script should start with #! which indicates to the kernel that the script is directly executable.
Y ou immediately follow this with the name of the shell, or program (spaces are allowed), to execute,
using the full path name. Generally you can count on having up to 32 characters, possibly more on
some systems, and can include one option. So to set up a Bourne shell script the first line would be:

/bin/sh

or for the C shdll:
#! /bin/csh -f

where the "-f" option indicates that it should not read your .cshrc. Any blanks following the magic
symbols, #!, are optional.

Y ou also need to specify that the script is executable by setting the proper bits on the file with chmod,
eg.
% chmod +x shell_script

Within the scripts # indicates a comment from that point until the end of the line, with #! being a
special caseif found asthe first characters of thefile.

9.2 Setting Parameter Values

Parameter values, e.g. param, are assigned as:

Bourne shell C shell
param=value set param = value

where value is any valid string, and can be enclosed within quotations, either single ("value) or
double (" value"), to allow spaces within the string value. When enclosed with backquotes (‘value’)
the string is first evaluated by the shell and the result is substituted. This is often used to run a
command, substituting the command output for value, e.g.:

Introduction to Unix © 1998 University Technology Services, The Ohio State University 103

Shell Programming

$ day="date +%a
$ echo $day
Wed

After the parameter values has been assigned the current value of the parameter is accessed using the
$param, or Hparam}, notation.

9.3 Quoting

We quote strings to control the way the shell interprets any parameters or variables within the string.
We can use single (') and double (") quotes around strings. Double quotes define the string, but
alow variable substitution. Single quotes define the string and prevent variable substitution. A
backslash (\) before a character is said to escape it, meaning that the system should take the character
literally, without assigning any specia meaning to it. These quoting techniques can be used to
separate a variable from a fixed string. As an example lets use the variable, var, that has been
assigned the value bat, and the constant string, man. If | wanted to combine these to get the result
"batman” | might try:

$varman
but this doesn’t work, because the shell will be trying to evaluate a variable called var man, which

doesn’t exist. To get the desired result we need to separate it by quoting, or by isolating the variable
with curly braces ({}), asin:

"$var'man - quote the variable
$var""man - separate the parameters
$var'man” - quote the constant
$var'man - separate the parameters
$var'man' - quote the constant
$var\man - separate the parameters
${var} man - isolate the variable

These dl work because”, ', \, {, and } are not valid charactersin a variable name.

We could not use either of
"$var’ man
\$varman
because it would prevent the variable substitution from taking place.
When using the curly braces they should surround the variable only, and not include the $, otherwise,
they will beincluded as part of the resulting string, e.g.:

% echo {$var} man
{bat} man

104 © 1998 University Technology Services, The Ohio State University Introduction to Unix

Variables

9.4 Variables

There are a number of variables automatically set by the shell when it starts. These allow you to
reference arguments on the command line.

These shell variables are;

TABLE 9.1 Shell Variables
Variable Usage sh csh
$H number of arguments on the command line X
$ options supplied to the shell X
$? exit vaue of the last command executed X
$$ process number of the current process X X
$! process number of the last command done in background X
$n argument on the command line, where n isfrom 1 through 9, reading left toright | x X
$0 the name of the current shell or program X X
$* all arguments on the command line ("$1 $2 ... $9") X X
$@ all arguments on the command line, each separately quoted ("$1" "$2" ... "$9") X
$argv[n] selects the nth word from the input list X
${argvn]} same as above X
$Hargv report the number of wordsin theinput list X
We can illustrate these with some simple scripts. First for the Bourne shell the script will be:
#!/bin/sh
echo "$#:" $#
echo '$#:' $#
echo '$-:' &
echo '$?' $?
echo '$$:" $$
echo '$!:" $!
echo '$3:"' $3
echo '$0:' $0
echo '$*:' $*
echo '$@:' $@
Introduction to Unix © 1998 University Technology Services, The Ohio State University 105

Shell Programming

When executed with some arguments it displays the values for the shell variables, e.g.:

$./variables.sh one two three four five
55
$#. 5
$-:
$2.0
3: 12417
$:
$3: three
$0: ./variables.sh
$*: one two three four five
$@: one two three four five

Asyou can see, we needed to use single quotes to prevent the shell from assigning special meaning to
$. The double quotes, asin the first echo statement, allowed substitution to take place.

Similarly, for the C shell variables we illustrate variable substitution with the script:
#!/bin/csh -f
echo '$$:" $$
echo '$3:" $3
echo '$0:" $0
echo '$*:"' $*
echo 'Sargv[2]:' $argv[2]
echo ‘$argv[4]} " ${argv[4]}
echo '$#targv:’ $ttargv

which when executed with some arguments displays the following:

% ./variables.csh one two three four five
$$: 12419
$3: three
$0: ./variables.csh
$*: one two three four five
$argv[2]: two
${argv[4]}: four
$#argv: 5

106 © 1998 University Technology Services, The Ohio State University Introduction to Unix

Parameter Substitution

9.5 Parameter Substitution

Y ou can reference parameters abstractly and substitute values for them based on conditional settings
using the operators defined below. Again we will use the curly braces ({}) to isolate the variable and
its operators.

$parameter substitute the value of parameter for this string

${parameter} same as above. The brackets are helpful if there’ s no separation
between this parameter and a neighboring string.

$parameter= sets parameter to null.

${parameter -default} if parameter isnot set, then use default asthe value here. The
parameter is not reset.

${parameter =default} if parameter isnot set, then set it to default and use the new value

${parameter +newval) if parameter is set, then use newval, otherwise use nothing here.
The parameter is not reset.

${parameter ?message} if parameter isnot set, then display message. |If parameter is set,

then use its current value.

There are no spaces in the above operators. If acolon (;) isinserted before the -, =, +, or ? then atest
if first performed to seeif the parameter has a non-null setting.

The C shell has afew additional ways of substituting parameters:

$list[n] selects the nth word from list
${list[n]} same as above

$Hlist report the number of wordsin list
$?parameter return 1 if parameter is set, O otherwise
${?parameter} same as above

$< read aline from stdin

The C shell also defines the array, $argv[n] to contain the n arguments on the command line and
$#ar gv to be the number of arguments, as noted in Table 9.1.

Introduction to Unix © 1998 University Technology Services, The Ohio State University 107

Shell Programming

To illustrate some of these features we'll use the test script below.

#!/bin/sh
param0=$0
test -n"$1" & & paraml1=$1
test -n "$2" & & param2=$2
test -n "$3" & & param3=$3
echo 0: $param0
echo "1: ${ param1-1}: \c" ;echo $paraml
echo "2: ${ param2=2}: \c" ;echo $param2
echo "3: ${ param3+3}: \c" ;echo $param3

In the script we first test to see if the variable exists, if so we set a parameter to itsvalue. Below this
we report the values, allowing substitution.

In the first run through the script we won’t provide any arguments:

$./parameter.sh
0: ./parameter.sh # always finds $0
11 # substitute 1, but don't assign this value
2:2.2 # substitute 2 and assign this value
3 # don't substitute

In the second run through the script we' Il provide the arguments:

$./parameter one two three

0: ./parameter.sh # aways finds $0

1: one: one # don't substitute, it aready has avalue
2: two: two # don't substitute, it aready has avalue
3: 3: three # substitute 3, but don’t assign this value

108 © 1998 University Technology Services, The Ohio State University Introduction to Unix

Here Document

9.6 Here Document

A heredocument isaform of quoting that allows shell variablesto be substituted. It'saspecial form
of redirection that starts with <<WORD and ends with WORD as the only contents of aline. In the
Bourne shell you can prevent shell substitution by escaping WORD by putting a\ in front of it on the
redirection line, i.e. <<\WORD, but not on the ending line. To have the same effect the C shell
expectsthe\ in front of WORD at both locations.

The following scriptsillustrate this,

for the Bourne shdll:

#/bin/sh

does=does

cat << EOF

This here document
$does $not

do variable substitution
EOF

cat << \EOF

This here document
$does $not

do variable substitution
EOF

and for the C shell:
#/bin/csh -f

set does = does

set not =""

cat << EOF

This here document
$does $not

do variable substitution
EOF

cat << \EOF

This here document
$does $not

do variable substitution
\EOF

Both produce the outpuit:

This here document
does

do variable substitution
This here document
$does $not

do variable substitution

In the top part of the example the shell variables $does and $not are substituted. In the bottom part
they are treated as simple text strings without substitution.

Introduction to Unix © 1998 University Technology Services, The Ohio State University 109

Shell Programming

9.7 Interactive Input

Shell scripts will accept interactive input to set parameters within the script.

9.7.1 Sh
Sh uses the built-in command, read, toread in aline, e.g.:

read param

We can illustrate this with the simple script:

#/bin/sh

echo "Input a phrase \c" # Thisis/bin/echo which requires" \c" to prevent <newline>
read param

echo param=$param

When we run this script it prompts for input and then echoes the resullts:

$./read.sh
Input a phrase hello frank #1 typein hello frank <return>
param=hello frank

9.7.2 Csh
Csh uses the $< symbol to read aline from stdin, e.qg.:
set param = $<

The spaces around the equal sign are important. The following script illustrates how to use this.
#!/bin/csh -f
echo -n"Input a phrase " # This built-in echo requires -n to prevent <newline>
set param = $<
echo param=$param

Again, it prompts for input and echoes the results:

% ./read.csh
Input a phrase hello frank #1 typein hello frank <return>
param=hello frank

110 © 1998 University Technology Services, The Ohio State University Introduction to Unix

Functions

9.8 Functions

The Bourne shell has functions. These are somewhat similar to aliases in the C shell, but allow you
more flexibility. A function has the form:

fen () { command; }

where the space after {, and the semicolon (;) are both required; the latter can be dispensed with if a
<newline> precedesthe }. Additional spaces and <newline>’'s are allowed. We saw afew examples
of thisin the sample .profilein an earlier chapter, where we had functionsfor Isand Il:

IS() { /bin/ls -shF "$@";}

() { Is-a "$@";}

The first one redefines Is so that the options -sbF are aways supplied to the standard /bin/ls
command, and acts on the supplied input, " $@" . The second one takes the current value for Is (the
previous function) and tacks on the -al options.

Functions are very useful in shell scripts. The following is a smplified version of one | use to
automatically backup up system partitions to tape.

#/bin/sh

Cron script to do a complete backup of the system

HOST="/binfuname -n’

admin=frank

Mt=/bin/mt

Dump=/usr/shin/ufsdump

Mail=/bin/mailx

device=/dev/rmt/On

Rewind="$Mt -f $device rewind"

Offline="$Mt -f $device rewoffl"

Failure - exit

failure () {

$Mail -s"Backup Failure - $HOST" $admin << EOF _failure
$HOST
Cron backup script failed. Apparently there was no tape in the device.

EOF failure
exit 1

}

Dump failure - exit
dumpfail () {

Introduction to Unix © 1998 University Technology Services, The Ohio State University 111

Shell Programming

$Mail -s"Backup Failure - SHOST" $admin << EOF_dumpfail
$HOST
Cron backup script failed. Initial tape access was okay, but dump failed.
EOF_dumpfail
exit 1
}
Success
success () {
$Mail -s"Backup completed successfully - SHOST" $admin << EOF_success
$HOST
Cron backup script was apparently successful. The /etc/dumpdatesfileis:
“/bin/cat /etc/dumpdates
EOF_success
}
Confirm that the tape isin the device
$Rewind || failure
$Dump Ouf $device/ || dumpfail
$Dump Ouf $device /usr || dumpfail
$Dump Ouf $device /home || dumpfail
$Dump Ouf $device /var || dumpfail
($Dump Ouf $device /var/spool/mail || dumpfail) & & success
$Offline

This script illustrates a number of topics that we' ve looked at in this document. It starts by setting
various parameter values. HOST is set from the output of acommand, admin is the administrator of
the system, Mt, Dump, and Mail are program names, device is the specia device file used to access
the tape drive, Rewind and Offline contain the commands to rewind and off-load the tape drive,
respectively, using the previously referenced Mt and the necessary options. There are three functions
defined: failure, dumpfail, and success. The functionsin this script all use ahere document to form
the contents of the function. We also introduce the logical OR (|[) and AND (& &) operators here;
each is position between a pair of commands. For the OR operator, the second command will be run
only if the first command does not complete successfully. For the AND operator, the second
command will be run only if the first command does complete successfully.

The main purpose of the script is done with the Dump commands, i.e. backup the specified file
systems. First an attempt is made to rewind the tape. Should thisfail, || failure, the failur e function
is run and we exit the program. If it succeeds we proceed with the backup of each partition in turn,
each time checking for successful completion (|| dumpfail). Should it not complete successfully we
run the dumpfail subroutine and then exit. If the last backup succeeds we proceed with the success
function ((...) & & success). Lastly, we rewind the tape and take it offline so that no other user can
accidently write over our backup tape.

112 © 1998 University Technology Services, The Ohio State University Introduction to Unix

Control Commands

9.9 Control Commands

9.9.1 Conditional if
The conditional if statement is available in both shells, but has a different syntax in each.

9.9.1.1 Sh
if conditionl
then
command list if conditionl istrue
[élif condition2
then command list if condition2 istrue]
[else
command list if conditionl isfalse]
fi
The conditions to be tested for are usually done with the test, or [] command (see Section 8.9.6). The
if and then must be separated, either with a <newline> or a semicolon (;).
#!/bin/sh
if [$#-ge2]
then
echo $2
elif [$#-eq1]; then
echo $1
else
echo No input
fi

There are required spacesin the format of the conditional test, one after [and one before]. This script
should respond differently depending upon whether there are zero, one or more arguments on the
command line. First with no arguments:

$ Jif.sh
No input

Now with one argument:

$./if.sh one
one

And now with two arguments:

$./if.sh onetwo
two

Introduction to Unix © 1998 University Technology Services, The Ohio State University 113

Shell Programming

9.9.1.2 Csh

if (condition) command

-or-
if (conditionl) then

command list if conditionl istrue
[elseif (condition2) then

command list if condition2 is trug]
[else

command list if conditionl isfalse]
endif

Theif and then must be on the same line.

#/bin/csh -f

if ($#argv >=2) then
echo $2

elseif ($#argv == 1) then
echo $1

else
echo No input

endif

Again, this script should respond differently depending upon whether | have zero, one or more
arguments on the command line. First with no arguments:

% .Jif.csh
No input

Now with one argument:

% ./if.csh one
one

And now with two arguments:

% ./if.csh one two
two

114 © 1998 University Technology Services, The Ohio State University Introduction to Unix

Control Commands

9.9.2 Conditional switch and case

To choose between a set of string values for a parameter use case in the Bourne shell and switch in
the C shell.

9.9.2.1 Sh
case parameter in
patternl||patternlal) command listl;;
pattern2) command list2
command list2a;;
pattern3) command list3;;
)5

€sac

Y ou can use any valid filename meta-characters within the patterns to be matched. The ;; ends each
choice and can be on the same line, or following a <newline>, as the last command for the choice.
Additional alternative patterns to be selected for a particular case are separated by the vertical bar, |,
as in the first pattern line in the example above. The wildcard symbols,: ? to indicate any one
character and * to match any number of characters, can be used either alone or adjacent to fixed
strings.

This simple example illustrates how to use the conditional case statement.

#!/bin/sh
case$lin
aglab) echo A

b?) echo "B \c"

echo $1;;
c*) echo C;;
*) echoD;;

esac

So when running the script with the arguments on the left, it will respond as on the right:

aa A
ab A
ac D
bb B bb
bbb D
C C
cc C
fff D

Introduction to Unix © 1998 University Technology Services, The Ohio State University 115

Shell Programming

9.9.2.2 Csh
switch (parameter)
case patternl:
command listl
[breaksw]
case pattern2:
command list2
[breaksw]
default:
command list for default behavior
[breaksw]
endsw

breaksw is optional and can be used to break out of the switch after a match to the string value of the
parameter is made. Switch doesn’t accept "|" in the pattern list, but it will allow you to string several
case statements together to provide a similar result. The following C shell script has the same
behavior as the Bourne shell case example above.

#!/bin/csh -f
switch ($1)
case aa
case ab:
echo A
breaksw
case b?
echo-n"B"
echo $1
breaksw
case C*:
echo C
breaksw
default:
echo D
endsw

116 © 1998 University Technology Services, The Ohio State University Introduction to Unix

Control Commands

9.9.3 for and foreach
One way to loop through alist of string valuesis with the for and foreach commands.

9.9.3.1 Sh
for variable[in list_of values]
do
command list
done

The list_of _values is optional, with $@ assumed if nothing is specified. Each value in this list is
sequentially substituted for variable until the list isemptied. Wildcards can be used and are applied
to file names in the current directory. Below we illustrate the for loop in copying all files ending in
.old to similar names ending in .new. In these examples the basename utility extracts the base part of
the name so that we can exchange the endings.

#1/bin/sh

for filein *.old

do
newf="basename %file .old"
cp $file $newf.new

done
9.9.3.2 Csh
foreach variable (list_of values)
command list
end

The equivalent C shell script to copy all filesendingin .old to .new is.
#!/bin/csh -f
foreach file (*.old)
set newf = “basename $file .old’
cp $file Snewf.new
end

Introduction to Unix © 1998 University Technology Services, The Ohio State University 117

Shell Programming

9.9.4 while
The while commands let you loop as long as the condition is true.

9.9.4.1 Sh
while condition
do
command list
[break]
[continue]
done

A simple script toillustrate awhileloopis:

#/bin/sh
while[$#-gt 0]
do
echo $1
shift
done

This script takes the list of arguments, echoes the first one, then shifts the list to the left, losing the
original first entry. Itloops through until it has shifted all the arguments off the argument list.

$./while.sh one two three

one

two

three

118 © 1998 University Technology Services, The Ohio State University Introduction to Unix

Control Commands

9.9.4.2 Csh
while (condition)
command list
[break]
[continue]
end

If you want the condition to always be true specify 1 within the conditional test.

A C shell script equivalent to the one aboveis:

#!/bin/csh -f

while ($#argv '=0)
echo $argv[1]
shift

end

9.9.5 until
Thislooping feature is only allowed in the Bourne shell.

until condition
do

command list while condition isfalse
done

The condition is tested at the start of each loop and the loop is terminated when the condition is true.
A script equivalent to the while examples aboveis:
#!/bin/sh
until [$#-1e0]
do
echo $1
shift
done

Notice, though, that here we're testing for less than or equal, rather than greater than or equal,
because the until loop islooking for afalse condition.

Both the until and while loops are only executed if the condition is satisfied. The condition is
evaluated before the commands are executed.

Introduction to Unix © 1998 University Technology Services, The Ohio State University 119

Shell Programming

9.9.6 test
Conditional statements are evaluated for true or false values. This is done with the test, or its

equivalent, the [] operators.

It the condition evaluates to true, a zero (TRUE) exit status is set,

otherwise a non-zero (FAL SE) exit status is set. If there are no arguments a non-zero exit status is
set. The operators used by the Bourne shell conditional statements are given below.

For filenames the options to test are given with the syntax:

-option filename

The options available for the test operator for filesinclude:

trueif it existsand is readable

trueif it exists and iswritable

trueif it existsand is executable

trueif it existsand isaregular file (or for csh, exists and is not a directory)
trueif it existsand is adirectory

trueif it exists and is a symboalic link

trueif it existsand isacharacter special file (i.e. the specia deviceisaccessed
one character at atime)

trueif it exists and is ablock special file (i.e. the device is accessed in blocks
of data)

trueif it exists and is a named pipe (fifo)

trueif it exists and is setuid (i.e. has the set-user-id bit set, sor Sin the third
bit)

trueif it existsand is setgid (i.e. has the set-group-id bit set, sor Sin the sixth
bit)

trueif it exists and the sticky bit isset (at in bit 9)

trueif it exists and is greater than zero in size

Thereisatest for file descriptors:

-t [file_descriptor]

There are testsfor strings:
-z string
-n string
stringl = string2
stringl !'=string2
string

trueif the open file descriptor (default is 1, stdin) is associated with aterminal

trueif the string length is zero

trueif the string length is non-zero
trueif stringl isidentical to string2
trueif stringl is non identical to string2
trueif string is not NULL

120 © 1998 University Technology Services, The Ohio State University Introduction to Unix

Control Commands

There areinteger comparisons.

nl-eqn2 true if integers nl and n2 are equal

nl-nen2 trueif integers nl and n2 are not equal

nl-gt n2 trueif integer nlis greater than integer n2

nl-gen2 trueif integer nl is greater than or equal to integer n2
nl-It n2 true if integer nl islessthan integer n2

nl-len2 trueif integer nlislessthan or equal to integer n2

The following logical operators are aso available:
! negation (unary)

-a and (binary)
-0 or (binary)
0 expressions within the () are grouped together. 'Y ou may need to quote the ()

to prevent the shell from interpreting them.

Introduction to Unix © 1998 University Technology Services, The Ohio State University 121

Shell Programming

9.9.7 C Shell Logical and Relational Operators

The C shell hasits own set of built-inlogical and relational expression operators. 1n descending order
of precedence they are:

() group expressions with ()

~ inversion (one's complement)

! logical negation

* 1, % multiply, divide, modulus

+, - add, subtract

<<, >> bitwise shift left, bitwise shift right
<= less than or equal

>= greater than or equal

< less than

> greater than

== equal

1= not equal

=~ match a string

I~ don’'t match the string

& bitwise AND

A bitwise XOR (exclusive or)

| bitwise OR

&& logical AND

I logical OR

{command} true (1) if command terminates with a zero exit status, false (0) otherwise.

The C shell also allows file type and permission inquiries with the operators:

-r return true (1) if it exists and is readable, otherwise return false (0)

-w trueif it exists and iswritable

-X trueif it existsand is executable

-f trueif it existsand isaregular file (or for csh, exists and is not a directory)
-d trueif it existsand isadirectory

-e trueif thefile exists

-0 true if the user ownsthefile

-Z true if the file has zero length (empty)

122 © 1998 University Technology Services, The Ohio State University Introduction to Unix

CHAPTER 10 Editors

There are numerous text processing utilities available with Unix, as is noted throughout this
document (e.g., ed, ex, sed, awk, the grep family, and the roff family). Among the editors, the
standard "visua" (or fullscreen) editor on Unix isvi. It comprises a super-set, so to speak, of ed and
ex (the Unix line editors) capabilities.

Viisamodal editor. Thismeansthat it has specific modes that allow text insertion, text deletion, and
command entering. Y ou leave the insert mode by typing the <escape> key. This brings you back to
command mode. The line editor, ex, is incorporated within vi. You can switch back and forth
between full-screen and line mode as desired. In vi mode type Q to go to ex mode. In ex mode at the
. prompt type vi to return to vi mode. Thereis also aread-only mode of vi, which you can invoke as
view.

Another editor that is common on Unix systems, especially in college and university environments, is
emacs (which stands for "editing macros'). While vi usually comes with the Unix operating system,
emacs usually does not. It is distributed by The Free Software Foundation. It is arguably the most
powerful editor available for Unix. It is also a very large software system, and is a heavy user of
computer system resources.

The Free Software Foundation and the GNU Project (of which emacs is a part) were founded by
Richard Stallman and his associates, who believe (as stated in the GNU Manifesto) that sharing
software is the "fundamental act of friendship among programmers.” Their General Public License
guarantees your rights to use, modify, and distribute emacs (including its source code), and was
specifically designed to prevent anyone from hoarding or turning afinancial profit from emacs or any
software obtained through the Free Software Foundation. Most of their software, including emacs, is
available at ftp://ftp.gnu.org/pub/gnu/ and http://www.gnu.org/.

Both vi and emacs alow you to create start-up files that you can populate with macros to control
settings and functions in the editors.

Introduction to Unix © 1998 University Technology Services, The Ohio State University 123

Editors

10.1 Configuring Your vi Session

To configure the vi environment certain options can be set with the line editor command : set during a
vi editing session. Alternatively, frequently used options can be set automatically when vi isinvoked,
by use of the .exrc file. Thisfile can also contain macros to map keystrokes into functions using the
map function. Within vi these macros can be defined with the :map command. Control characters
can be inserted by first typing <control>-V (*V), then the desired control character. The options
available in vi include, but are not limited to, the following. Some options are not available on every
Unix system.

:set al

:set ignorecase
‘set list

:set nolist

:set number

:set nonumber

:set showmode
:set noshowmode
:set wrapmargin=n
:set wrapmargin=0
:set warn

:set nowarn

display all option settings

ignore the case of a character in asearch
display tabs and carriage returns

turn off list option

display line numbers

turn off line numbers

display indication that insert mode ison
turn off showmode option

turn on word-wrap n spaces from the right margin
turn off wrapmargin option

display "No write since last change"
turn of f "write" warning

Thefollowing isasample .exrcfile:

set wrapmargin=10
set number

set list

set warn

set ignorecase

map K {!}fmt -80
map "Z :1spell

reformat this paragraph, {!}, using fmt to 80 characters per line
#invoke spell, :!, to check aword spelling (return to vi with *D)

124

© 1998 University Technology Services, The Ohio State University

Introduction to Unix

Configuring Y our emacs Session

10.2 Configuring Your emacs Session

Configuring the emacs environment amounts to making callsto LISP functions. Emacs isinfinitely
customizable by means of emacs variables and built-in functions and by using Emacs LISP
programming. Settings can be specified from the minibuffer (or command line) during an emacs
session. Alternatively, frequently used settings can be established automatically when emacs is
invoked, by use of a.emacs file. Though a discussion of Emacs LISP is beyond the scope of this
document, afew examples of common emacs configurations follow.

To set or toggle emacs variables, or to use emacs built-in functions, use the <escape> key ("Meta" is
how emacsrefersto it), followed by the letter x, then by the variable or function and its arguments.

M-x what-line what line is the cursor on?
M-x auto-fill-mode turn on word-wrap
M-x auto-fill-mode turn off word-wrap
M-x set-variable<return>
fill-column<return> set line-length to
45 45 characters
M-x set-variable<return>
auto-save-interval <return> save the file automatically after every
300 300 keystrokes
M-x goto-line<return>16 move the cursor to line 16
M-x help-for-help invoke emacs help when C-h has been bound to the
backspace key

The following is a sample .emacsfile:

(message "Loading ~/.emacs...")
; Comments begin with semi-colons and continue to the end of the line.

(setq text-mode-hook 'turn-on-auto-fill) ;turn on word-wrap
(setq fill-column 45) ;line-length=45 chars
(setq auto-save-interval 300) ;save after every 300 keystrokes

; Bind (or map) the rubout (control-h) function to the backspace key
(global-set-key "\C-h" 'backward-del ete-char-untabify)

; Bind the emacs help function to the keystroke sequence "C-x ?'.
(global-set-key "\C-x?" 'help-for-help)

; Tojump to line 16, type M-#<return>16

(global-set-key "\M-#" 'goto-line)

; Tofind out what line you are on, type M-n

(global-set-key "\M-n" 'what-line)

(message "~/.emacs |oaded.")

(message ")

Introduction to Unix © 1998 University Technology Services, The Ohio State University 125

Vi Quick Reference Guide

(fox adeass Aq %%%om [nun) aul|

1IXe pue 3|1} 1ua.INd 01 sabueyd a11M 77
uonisod Josino e
pUeWIWO? [PUs JO1Nsalsuissul (puewiwod)ji:
adedss |jpuUs (prewiwo);:
(®14e uesul) uonsod
10sJn9 WaiInday) I 1ipo Wl
-IN2 0JU1 3|1} JO SIUSIUOD SpPesl) 1
(Bwreu)
019]1} 1US4INJ JO sureU sabueyd (ewreu) J:
511 Wwewnble u1a|1) 1%au S1pa u:
sabueyd
SpJedsip pue UoIssas 11pa siinb ib:
apew
safueyd ou/m UoISSss 11pa siinb b:
®]1 Wweu
-INJ S }|Meep) a|1) SAILIMIBAOC ©11) im:
U0SS3S 11pa s1inb pue
3|1} WL.JnJ 0] sabueyd SS1LIM bm:
@]11 Wwend
SI1nejop) 8|1} 0} SabUeUd ol LIM ®1) m:
:uolre|ndive | 814
10sInd 810Joq 11 pae PP 0 payueA sind d
10sInd 1R 1%3] papp 10 paxuel sind d
Ja1ng o1spiom (u) syuek mUu)A
yngo1saull (U) sueA AA(u)
‘pUewIWod (S:) uonniisgns ise| skeadal)
B/MBU/PI0/S <Pa1IB4e SOU BU|>:
P10 10} (S)pIom maU eI sans S:
au1| JUBLIND 10} 1X31 SBINMISgNS S
Jo13e. ey JUs.INd 10} 1X91 SSINMISONS s
abueyd 1se| seadal
aul|
SIUY3 uo auop SN[puewwod 1se| ayl opun n
aul| 1xau 8y} pue aul| JuaLnd ayisulof C

J910e.1eU0 1US.1IND Y] 10 8se0 a1 sebueyd

1US.JN2 3y} Uo 11 bulurewsJ sabueyd o)
(x) Jorv| 8yl 01 eI SAbLEYD (X)10
aul| 8y Jo pud 8y} 0} 1x) sabileyd $
spJiom (u)
1XaU aYy) Jo se1efeyd sabueyd mo(u)
(passaud s1adedsa |1jun Jo) plomayy
JO pUS [1IUN pIoM JO SiBdefeyd sebueyd MO
(passaud s12deass |nun o) auljay) Jo pus
[uUN (S)aul] uo se1FReYD mcv sobueyd 29(u)
spuewiwo) abueyd
Ja13efeyd snoinaud e pp X
(S)roereyd (U)seppp x(U)
Ja13e.eyd Jua.Ind saP PP X
aul1| JO pud 0} J0SIND WOJ} SO PP a
(S)piom (u) sl P mp(u)
S)pul (u) PP pp(u)
aul| Jus.INd Ssel PP pp
e 1 buiepea
INE) ma\m ol aul] Juad
-Ind ay1alojeq aul| mau uado (O eyde) 0]
P@19dA1 018Ul
U412 aYy) Jerfe aul| mau uado (oeyd _& o}
(puewiwod
abueyo 01 passa.d s1adesss |UN o) aul|
ay1 JO pus 8y} |1un SB13eeyd 1LIMBAO d
padAl o138 eyd 1%aU Byl YlIMm
10sInd 8y} Jepun Jeideleyd syl ade|dal J
aul1| 8y Jo pud 8y} 0 1xa) pusdde \'
aul|ays Jo Buiuuibag syl e 1xa) Lesul |
(121 Joyio |1MBAO
10U S90p) 10SINd 8y} Jorje 1xa1 puadde e

J0sInd 8yl a40jeq 1xa] Liesul

pJom Jo pue e
(S)piom (u) seq q(u)

(S)piom (u) premuo) m(u)

aul| Jo pus $

aul| Jo Buluuibaq (0ez) 0
(u)aulj Jo BuluuiBeg o1anow H(U)

3|14 Joaul| 1se| jo Buluuibeq 9

U3913s Jo aul| 1se| Jo Buiuuibaq 1
U39.0s Jo aul| ajppiw Jo Buluuibag N
U9a.0s Jo aul| doy Jo Buluuibeq H

(Jo112WI 10U SB0p ase? /A8y [041U02 SBRIIPUI /)
U308 Jey dn Nv

U335 }[ey umop Qv

US9.25 8U0 XJeq av

US9105 3UO pJemioy 4v

(ose xJiom Ajensn shax molreayl)

(S)oeds (u) wbu |(u)

S)ogeds (U)dn M(u)
(Syeoeds (U)umop [(u)
(S)egeds (u) o) y(u)

feuondo sI pue ‘Jequinu e saeaipul (u)

'SPUBLILLIOD JUSWBAO I J0SIND

2xe 1 Bunsssu

"DAI}ISUSS 8529 S| IA ‘PaledIpul aeym 1de0xg
‘pasn aq 0] spodu Aoy adedse ayl ‘paselue aq
01S| pURLLILLIOD U} Ip e awn ydeg Aoy adedsa
a1 Buissaid Aq pepadaid ale IA Ul SpuewIwo? ||

apIND 89UBIBJRY 2N IA €°0T

126

© 1998 University Technology Services, The Ohio State University

Introduction to Unix

emacs Quick Reference Guide

anes 0] pajdwoud aq pue ‘sJews 11xe 2-) XD
3|1} Wess}}Ipe 0] /HNng a1lim M-J X-D

3|1} anes S-0 X-D

uonsod Josino e 3|14 Lesul I X-D

9|1} sleusslfe [Peal pue puly A-D XD

11 peal pue aiy puty 0 XD

paxfew uolibas Adod M-I\

9T aul] 01 J0osInd aAOW OT <uini> wc__-ouom X-IN
S.ie1de.leyo Giy 01saul| Jo Yibus| 18s
G <UJINPJ> UWN|Od-||1} <UJINIBI> |Cqellen-1es X- |\

deim piom uo uiny apouw-|[1}-0Ine X- |\

uoifa. ul ydeibered yes ewiopl B- N
yde.bered rewiopl b-IN

uo171220| JUBIND O XS] PAlP PP MueA--B1sed AD
iod 03 yrew woly BuyiAens 1no adim--1no M-D
uoifal Jo Buluuibaq yew ©®-D

SpJom asodsue.] 1-IN

SJe17e.eyd asodsue) 1D

PJOM 85228MO| [-IN

pJom asedseddn n-n

pJom azielided -\

age|das Alenb %- N

asMal Ul yoless -0

pfemioy) yoseas s-D

SoUBIUSS || A-N

|aull 1Y A-D

piomesppp pP-N

Je1Jeeyo e appp p-2

Saw) (U) pURLLILLIOD 1X3U ay) Teadal w-n

BJIng Jo pus <-N

B1ng Jo Buuuibaq >N
yce.Besed jo pue -
yde.Bered jo Buiuuibeq FIN
90UBJUSS JO pud 9-IN
aouLuss Jo Buluuibaq e-N
pJomauo »oeq a-n

pJoM 3UO pJemioy FIN
premydeq ||04os AN
premioy |j04os A-D

USa.3s U0 aul] Jue.und ejusd -0
aul| Jo pue 9-0

aul| Jo Buluuibaq e-)

aul| xau u-0

aul|snoinaid d-o

J13e.feyo auo »oeq a-0
Ja13e.reyo auo premlio) -0

JUsWAOW I0S.IND

sJew3 aso|o 2-0 X-D

9|1} 8yl anes S$-0 X0

pueLIWwod Jo uoirsedo 1us.1ind Jo 1no 1eb B6-0 x-D
opun nx-o

dpy u-0

SpUBWIWOD [eIuassT

suolpun4 uellodw| Y10

‘(- IN Aq perealiput)
£y adeoss ayy Bumiy s1y Aq Jo (-O Aq pameolpur) Ay [04u00 By}
umop Buipjoy Anoauelnwis Aq Jeyiie paitedwiodde ke SpueLILIod soew g

apIN9 aoualajey Y2INd soews 0T

Introduction to Unix

© 1998 University Technology Services, The Ohio State University

127

Unix Command Summary

CHAPTER 11

Unix Command Summary

11.1 Unix Commands

In the table below we summarize the more frequently used commands on a Unix system. In this
table, asin general, for most Unix commands, file, could be an actual file name, or alist of file names,
or input/output could be redirected to or from the command.

TABLE 11.1

Unix Commands

Command/Syntax

What it will do

awk/nawk [optiong] file

scan for patterns in afile and process the results

cat [optiong] file

concatenate (list) afile

cd [directory]

change directory

chgrp [options] group file

change the group of thefile

chmod [optiong] file

change file or directory access permissions

chown [options] owner file

change the ownership of afile; can only be done by the superuser

chsh (passwd -e/-s) username login_shell

change the user’ s login shell (often only by the superuser)

cmp [optiong] filel file2

compare two files and list where differences occur (text or binary files)

compress [optiong] file

compress file and save it asfile.Z

cp [optiong] filel file2

copy filel into file2; file2 shouldn't already exist. Thiscommand creates
or overwrites file2.

cut (options) [file(s)]

cut specified field(s)/character(s) from linesin file(s)

date [optiong]

report the current date and time

dd [if=infile] [of=oultfil€] [oper-
and=value]

copy afile, converting between ASCII and EBCDIC or swapping byte
order, as specified

diff [optiong] filel file2

compare the two files and display the differences (text files only)

df [options] [resource]

report the summary of disk blocks and inodes free and in use

du [options] [directory or file]

report amount of disk spacein use

echo [text string]

echo the text string to stdout

ed or ex [optiong] file

Unix line editors

emacs [options] file

full-screen editor

expr arguments

evaluate the arguments. Used to do arithmetic, etc. in the shell.

file [optiong] file

classify the filetype

128

© 1998 University Technology Services, The Ohio State University

Introduction to Unix

Unix Commands

TABLE 11.1

Unix Commands

Command/Syntax

What it will do

find directory [options] [actions]

find files matching atype or pattern

finger [options] user[@hostname]

report information about users on local and remote machines

ftp [options] host

transfer file(s) using file transfer protocol

grep [options] 'search string' argument
egrep [options] 'search string' argument
fgrep [options] 'search string' argument

search the argument (in this case probably afile) for all occurrences of
the search string, and list them.

gzip [optiong] file
gunzp [optiong] file
zcat [optiong] file

compress or uncompress afile. Compressed files are stored with a.gz
ending

head [-number] file

display the first 10 (or number of) lines of afile

hostname

display or set (super-user only) the name of the current machine

kill [options] [-SIGNAL] [pid#] [%6job]

send asignal to the process with the process id number (pid#) or job con-
trol number (%n). The default signal isto kill the process.

In [options] source file target

link the source fileto the target

Ipg [optiong]
Ipstat [options]

show the status of print jobs

Ipr [optiong] file
Ip [optiong] file

print to defined printer

Iprm [optiong]
cancel [optiong]

remove aprint job from the print queue

Is[optiong] [directory or fil€]

list directory contents or file permissions

mail [options] [user]
mailx [optiong] [user]
Mail [options] [user]

simple email utility available on Unix systems. Type aperiod asthefirst
character on a new line to send message out, question mark for help.

man [options] command

show the manual (man) page for acommand

mkdir [options] directory

make adirectory

more [optiong] file
less[optiong] file
pg [optiong] file

page through atext file

mv [optiong] filel file2

move filel into file2

od [optiong] file

octal dump abinary file, in octal, ASCII, hex, decimal, or character
mode.

passwd [options]

set or change your password

paste [optiong] file

paste field(s) onto the linesin file

pr [optiong] file

filter thefile and print it on the terminal

ps [optiong]

show status of active processes

Introduction to Unix

© 1998 University Technology Services, The Ohio State University 129

Unix Command Summary

TABLE 11.1

Unix Commands

Command/Syntax

What it will do

pwd

print working (current) directory

rcp [options] hostname

remotely copy files from this machine to another machine

rlogin [options] hostname

login remotely to another machine

rm [optiong] file

remove (delete) afile or directory (-r recursively deletes the directory
and its contents) (-i prompts before removing files)

rmdir [options] directory

remove adirectory

rsh [options] hosthame

remote shell to run on another machine

script file

saves everything that appears on the screen to file until exit is executed

sed [optiong] file

stream editor for editing files from a script or from the command line

sort [optiong] file

sort the lines of the file according to the options chosen

sourcefile
.file

read commands from the file and execute them in the current shell.
source: C shell, .: Bourne shell.

strings [optiong] file

report any sequence of 4 or more printable characters ending in <NL> or
<NULL>. Usualy used to search binary filesfor ASCII strings.

stty [options]

set or display terminal control options

tail [optiong] file

display the last few lines (or parts) of afile

tar key[options] [file(s)]

tape archiver--refer to man pages for details on creating, listing, and
retrieving from archivefiles. Tar files can be stored on tape or disk.

tee [optiong] file

copy stdout to one or more files

telnet [host [port]]

communicate with another host using telnet protocol

touch [options] [date] file

create an empty file, or update the access time of an existing file

tr [optiong] stringl string2

tranglate the charactersin stringl from stdin into those in string2 in stdout

uncompressfile.Z

uncompressfile.Z and saveit as afile

uniq [optiong] file

remove repeated linesin afile

uudecode [fil€]

decode a uuencoded file, recreating the origina file

uuencode [file] new_name

encode binary fileto 7-bit ASCII, useful when sending via email, to be
decoded as new_name at destination

vi [optiong] file

visual, full-screen editor

wc [optiong] [file(s)]

display word (or character or line) count for file(s)

whereis [options] command

report the binary, source, and man page locations for the command
named

which command

reports the path to the command or the shell aliasin use

who or w

report who islogged in and what processes are running

zcat file.Z

concatenate (list) uncompressed file to screen, leaving file compressed on
disk

130 © 1998 University Technology Services, The Ohio State University Introduction to Unix

Highly Recommended

CHAPTER 12 A Short Unix Blbllography

12.1 Highly Recommended

UNIX for the Impatient, Paul W. Abrahams & Bruce R. Larson (Addison-Wesley Publishing
Company, 1992, ISBN 0-201-55703-7). (A current favorite. Recommended in the CIS Department
for Unix beginners.)

UNIXin aNutshell for BSD 4.3: A Desktop Quick Reference For Berkeley (O'Reilly & Associates,
Inc., 1990, ISBN 0-937175-20-X). (A handy reference for BSD.)

UNIX in aNutshell: A Desktop Quick Referencefor SystemV & Solaris2.0 (O'Reilly & Associates,
Inc., 1992, ISBN 0-56592-001-5). (A handy reference for SysV and Solaris 2.)

The UNIX Programming Environment, Brian W. Kernighan & Rob Pike (Prentice Hall, 1984). (A
classic. For seriousfolks.)

When You Can’t Find Your UNIX System Administrator, Linda Mui (O’ Reilly & Associates, Inc.,
1995, ISBN 1-56592-104-6).

UNIX Power Tools, Jerry Peek, Tim O’ Rellly, and Mike Loukides (O’ Reilly & Associates, 1993,
ISBN 0-679-79073-X). (Includesa CDROM of useful software for various OSs.)

12.2 Assorted Others

Understanding UNIX: A Conceptual Guide, James R. Groff & Paul N. Weinberg (Que Corporation,
1983).

Exploring the UNIX System, Stephen G. Kochan & Patrick H. Wood (SAMS, a division of
Macmillan Computer Publishing, 1989, ISBN 0-8104-6268-0).

Learning GNU Emacs, Debra Cameron and Bill Rosenblatt (O’ Reilly & Associates, 1992, ISBN
0-937175-84-6).

UNIX for Dummies, John R. Levine & Margaret Levine Young (IDG Books Worldwide, Inc., 1993,
ISBN 0-878058-58-4).

A Practical Guide to UNIX System V, Mark G. Sobell (The Benjamin/Cummings Publishing
Company, Inc., 1985, ISBN 0-80-530243-3).

UNIX Primer Plus, Mitchell Waite, Donald Martin, & Stephen Prata, (Howard W. Sams & Co., Inc.,
1983, ISBN 0-672-30194-6).

An Introduction to Berkeley UNI X, Paul Wang, (Wadsworth Publishing Company, 1988).

Introduction to Unix © 1998 University Technology Services, The Ohio State University 131

A Short Unix Bibliography

Unix Shell Programming, Stephen G. Kochan & Patrick H. Wood (Hayden Book Co., 1990, ISBN
0-8104-6309-1).

The Unix C Shell Field Guide, Gail Anderson and Paul Anderson (Prentice Hall, 1986, ISBN
0-13-937468-X).

A Student’s Guide to UNI X, Harley Hahn. (McGraw-Hill, 1993, ISBN 0-07-025511-3).

Tricks of the UNIX Masters, Russell G. Sage (Howard W. Sams & Co., Inc., 1987, ISBN
0-672-22449-6).

132 © 1998 University Technology Services, The Ohio State University Introduction to Unix

	Introduction to Unix
	1. Redistributions must retain the above copyright...
	2. Neither the name of the University nor the name...

	Table of Contents
	CHAPTER 1 History of Unix
	CHAPTER 2 Unix Structure
	2.1 The Operating System
	FIGURE 2.1 Unix System Structure

	2.2 The File System
	FIGURE 2.2 Unix File Structure

	2.3 Unix Directories, Files and Inodes
	2.4 Unix Programs

	CHAPTER 3 Getting Started
	3.1 Logging in
	3.1.1 Terminal Type
	3.1.2 Passwords
	3.1.3 Exiting
	3.1.4 Identity

	3.2 Unix Command Line Structure
	3.3 Control Keys
	3.4 stty - terminal control
	3.5 Getting Help
	3.6 Directory Navigation and Control
	TABLE 3.1 Navigation and Directory Control Command...
	TABLE 3.2 Unix vs DOS Navigation and Directory Con...
	3.6.1 pwd - print working directory
	3.6.2 cd - change directory
	3.6.3 mkdir - make a directory
	3.6.4 rmdir - remove directory
	3.6.5 ls - list directory contents

	3.7 File Maintenance Commands
	TABLE 3.3 File Maintenance Commands
	TABLE 3.4 Unix vs DOS File Maintenance Commands
	3.7.1 cp - copy a file
	3.7.2 mv - move a file
	3.7.3 rm - remove a file
	3.7.4 File Permissions
	3.7.5 chmod - change file permissions
	3.7.6 chown - change ownership
	3.7.7 chgrp - change group

	3.8 Display Commands
	TABLE 3.5 Display Commands
	3.8.1 echo - echo a statement
	3.8.2 cat - concatenate a file
	3.8.3 more, less, and pg - page through a file
	3.8.4 head - display the start of a file
	3.8.5 tail - display the end of a file

	CHAPTER 4 System Resources & Printing
	4.1 System Resources
	TABLE 4.1 System Resource Commands
	4.1.1 df - summarize disk block and file usage
	4.1.2 du - report disk space in use
	4.1.3 ps - show status of active processes
	4.1.4 kill - terminate a process
	4.1.5 who - list current users
	4.1.6 whereis - report program locations
	4.1.7 which - report the command found
	4.1.8 hostname/uname - name of machine
	4.1.9 script - record your screen I/O
	4.1.10 date - current date and time

	4.2 Print Commands
	TABLE 4.2 Printing Commands
	4.2.1 lp/lpr - submit a print job
	4.2.2 lpstat/lpq - check the status of a print job...
	4.2.3 cancel/lprm - cancel a print job
	4.2.4 pr - prepare files for printing

	CHAPTER 5 Shells
	5.1 Built-in Commands
	5.1.1 Sh
	5.1.2 Csh

	5.2 Environment Variables
	5.3 The Bourne Shell, sh
	5.4 The C Shell, csh
	5.5 Job Control
	5.6 History
	TABLE 5.1 C Shell History Substitution

	5.7 Changing your Shell

	CHAPTER 6 Special Unix Features
	6.1 File Descriptors
	6.2 File Redirection
	TABLE 6.1 File Redirection
	6.2.1 Csh
	6.2.2 Sh

	6.3 Other Special Command Symbols
	6.4 Wild Cards

	CHAPTER 7 Text Processing
	7.1 Regular Expression Syntax
	7.2 Text Processing Commands
	TABLE 7.1 Text Processing Commands
	7.2.1 grep
	7.2.2 sed
	7.2.3 awk, nawk, gawk

	CHAPTER 8 Other Useful Commands
	8.1 Working With Files
	TABLE 8.1 File utilities
	8.1.1 cmp - compare file contents
	8.1.2 diff - differences in files
	8.1.3 cut - select parts of a line
	8.1.4 paste - merge files
	8.1.5 touch - create a file
	8.1.6 wc - count words in a file
	8.1.7 ln - link to another file
	8.1.8 sort - sort file contents
	8.1.9 tee - copy command output
	8.1.10 uniq - remove duplicate lines
	8.1.11 strings - find ASCII strings
	8.1.12 file - file type
	8.1.13 tr - translate characters
	8.1.14 find - find files

	8.2 File Archiving, Compression and Conversion
	TABLE 8.2 File Archiving, Compression and Conversi...
	8.2.1 File Compression
	8.2.2 tar - archive files
	8.2.3 uuencode/uudecode - encode a file
	8.2.4 dd - block copy and convert
	8.2.5 od - octal dump of a file

	8.3 Remote Connections
	TABLE 8.3 Remote Connection Commands
	8.3.1 TELNET and FTP - remote login and file trans...
	8.3.2 finger - get information about users
	8.3.3 Remote commands

	CHAPTER 9 Shell Programming
	9.1 Shell Scripts
	9.2 Setting Parameter Values
	9.3 Quoting
	9.4 Variables
	TABLE 9.1 Shell Variables

	9.5 Parameter Substitution
	9.6 Here Document
	9.7 Interactive Input
	9.7.1 Sh
	9.7.2 Csh

	9.8 Functions
	9.9 Control Commands
	9.9.1 Conditional if
	9.9.1.1 Sh
	9.9.1.2 Csh

	9.9.2 Conditional switch and case
	9.9.2.1 Sh
	9.9.2.2 Csh

	9.9.3 for and foreach
	9.9.3.1 Sh
	9.9.3.2 Csh

	9.9.4 while
	9.9.4.1 Sh
	9.9.4.2 Csh

	9.9.5 until
	9.9.6 test
	9.9.7 C Shell Logical and Relational Operators

	CHAPTER 10 Editors
	10.1 Configuring Your vi Session
	10.2 Configuring Your emacs Session
	10.3 vi Quick Reference Guide
	10.4 emacs Quick Reference Guide

	CHAPTER 11 Unix Command Summary
	11.1 Unix Commands
	TABLE 11.1 Unix Commands

	CHAPTER 12 A Short Unix Bibliography
	12.1 Highly Recommended
	12.2 Assorted Others

